module fundit::bfiMatcher use fundit::sqlUtilities; use fundit::operationDataPuller; use fundit::performanceDataPuller; use fundit::dataSaver; /* * 返回预设的指标最小值 * * NOTE: 对数据量的要求, Java 计算coe相关性表时用48,但计算bfi时用10,这里统一用10 * */ def get_min_threshold(data_name) { d = dict(STRING, FLOAT); d['correlation'] = 0.64; d['data_count'] = 10; d['beta'] = 0.64; d['t_value'] = 2.58; d['r2'] = 0.64; d['r2_neutral'] = 0.04; return d[data_name]; } /* * T-value 的聚合函数版 * */ defg regressionT(y, x) { r = SELECT beta, tstat FROM ols(y, x, true, 1) WHERE rowNo(beta) = 1; return r[0]['tstat']; } /* * 计算 correlation & bfi-matching 所需要的数据指标(周数据计算,返回月度结果) * * NOTE: 与 Java BFI 不同,这里为了与RBSA保持统一,用收益率来计算相关性;转化成月度时用了各周平均值 */ def cal_monthly_closity(entity, nav1, nav2, win) { n1 = nav1; n1.sortBy!(['entity_id', 'price_date'], [1, 1]); n2 = nav2; n2.sortBy!(['benchmark_id', 'price_date'], [1, 1]); t_dates = SELECT entity_id, end_date, price_date FROM nav1 WHERE end_date >= entity.end_date; t0 = SELECT entity_id, end_date, n1.nav AS nav1, n1.nav.ratios()-1 AS ret1, n2.nav AS nav2, n2.nav.ratios()-1 AS ret2, tmoving(count, end_date, end_date, win) AS data_count FROM n1 INNER JOIN n2 ON n1.end_date = n2.end_date ORDER BY end_date; t_rt = table(100:0, ['entity_id', 'end_date', 'price_date', 'corr', /* 'info', */ 't_value', 'beta'], [entity.entity_id.type(), t_dates.end_date[0].type(), DATE, DOUBLE, /* DOUBLE, */ DOUBLE, DOUBLE]); for(dt in t_dates) { if( (EXEC data_count FROM t0 WHERE end_date = dt.end_date)[0] >= get_min_threshold('data_count') ){ rets = EXEC ret1, ret2 FROM t0 WHERE end_date BETWEEN(dt.end_date.temporalAdd(duration('-' + win$STRING)):dt.end_date); cor = corr(rets.ret1, rets.ret2); // info = mean(rets.ret1 - rets.ret2) \ std(rets.ret1 - rets.ret2); // 貌似没用 t_value = regressionT(rets.ret1, rets.ret2); bta = beta(rets.ret1, rets.ret2); // 用 ols() 算的值和这个一样 INSERT INTO t_rt VALUES (entity.entity_id, dt.end_date, dt.price_date, cor, /*info ,*/ t_value, bta); } } // 将每月各周的数据平均值作为月度数据返回 return SELECT entity_id, price_date.month().last() AS end_date, price_date.last() AS price_date, corr.avg() AS corr, // info.avg() AS info, t_value.avg() AS t_value, beta.avg() AS beta FROM t_rt GROUP BY entity_id, price_date.month(); } /* * 计算目标和各资产类别指数及BFI因子的累计净值相关系数 * * @param entity_info : [COLUMNS] entity_id, end_date, price_date (这个 price_date 是需要计算的最早 price_date) * @param nav_entity
: [COLUMNS] entity_id, end_date, price_date, nav * @param nav_index
: [COLUMNS] entity_id, end_date, price_date, nav * @param entity_coe OUT
: [COLUMNS] entity_id, end_date, index_id, coe_1y, coe_3y, coe_5y, t_value_1y, t_value_3y, t_value_5y, beta_1y, beta_3y, beta_5y * * NOTE: 1)整合 Java中 TampCalcCorrelationServiceImpl 和 BestFitIndexServiceImpl 做的计算, 取消了没用的 info_ratio * 2)周度数据时,nav表中的 end_date=price_date.weekEnd(); 月度数据时, end_date=price_date.month() * 3)暂时保留取NAV,现算return的方法 * */ def cal_index_coe(entity_info, nav_entity, nav_index, mutable entity_coe) { if(nav_entity.isVoid() || nav_entity.size() == 0 || nav_index.isVoid() || nav_index.size() == 0) return null; v_indexes = nav_index.entity_id.distinct(); // 两次循环遍历所有entity和指数 for(entity in entity_info) { //entity= entity_info[0] nav1 = SELECT entity_id, end_date, price_date, nav FROM nav_entity WHERE entity_id = entity.entity_id; for(index in v_indexes) { //index=v_indexes[0] nav2 = SELECT entity_id AS benchmark_id, end_date, price_date, nav FROM nav_index WHERE entity_id = index; if(nav2.isVoid() || nav2.size() == 0) continue; // 忽略已经停止更新的指数,或者是特殊的无风险利率 IN0000000M closity_1y = cal_monthly_closity(entity, nav1, nav2, 1y); closity_3y = cal_monthly_closity(entity, nav1, nav2, 3y); closity_5y = cal_monthly_closity(entity, nav1, nav2, 5y); INSERT INTO entity_coe SELECT c1.entity_id, c1.end_date, index, c1.corr AS coe_1y, c3.corr AS coe_3y, c5.corr AS coe_5y, //c1.corr2 AS coe_1y_2, c3.corr2 AS coe_3y_2, c5.corr2 AS coe_5y_2, //c1.info AS info_ratio_1y, c3.info AS info_ratio_3y, c5.info AS info_ratio_5y, c1.t_value AS t_value_1y, c3.t_value AS t_value_3y, c5.t_value AS t_value_5y, c1.beta AS beta_1y, c3.beta AS beta_3y, c5.beta AS beta_5y FROM closity_1y c1 LEFT JOIN closity_3y c3 ON c1.end_date = c3.end_date LEFT JOIN closity_5y c5 ON c1.end_date = c5.end_date; } } } /* * 计算基金/组合和各资产类别指数及BFI因子的累计净值相关系数 (用周收益计算) * * @param entity_info
: [COLUMNS] entity_id, price_date * * NOTE: 整合 Java中 TampCalcCorrelationServiceImpl 和 BestFitIndexServiceImpl 做的计算 * * Example: cal_entity_index_coe('MF', get_fund_info(['MF00003PW1', 'MF00003PW2', 'MF00003RZI']).join(take(2024.09.30, 3) AS price_date).rename!('fund_id', 'entity_id')); * cal_entity_index_coe('PF', get_portfolio_info([166002]).join(take(2024.09.30, 1) AS price_date).rename!('portfolio_id', 'entity_id')); * */ def cal_entity_index_coe(entity_type, entity_info) { if(entity_info.isVoid() || entity_info.size() == 0) return null; // 取数据集中最早日期作为因子的起始日期 start_day = entity_info.price_date.min(); // 取数据集每个基金组合指定日期之前5年至今的周净值 s_json = (SELECT entity_id AS sec_id, price_date.temporalAdd(-5y) AS price_date FROM entity_info).toStdJson(); nav_entity = get_nav_for_return_calculation(entity_type, 'w', s_json); if(nav_entity.isVoid() || nav_entity.size() == 0) return null; nav_entity = SELECT sec_id AS entity_id, price_date.weekEnd() AS end_date, price_date, cumulative_nav AS nav FROM nav_entity; // 取相关性计算及BFI用得到的指数/因子列表 // 只有基金需要单独做相关性计算,目的是为基金推荐做数据准备 if(entity_type in ('MF', 'HF')) v_indexes = (get_bfi_index_list().factor_id <- get_correlation_index_list().entity_id).distinct(); else { v_indexes = get_bfi_index_list().factor_id; // Portfolio_id 改回整型 v_port_id = nav_entity.entity_id$INT; nav_entity.replaceColumn!('entity_id', v_port_id); } s_json2 = table(v_indexes AS sec_id, take(start_day.temporalAdd(-5y), v_indexes.size()) AS price_date).toStdJson(); // 取指数及因子周点位 nav_index = get_nav_for_return_calculation('FA', 'w', s_json2).unionAll(get_nav_for_return_calculation('MI', 'w', s_json2)); nav_index = SELECT sec_id AS entity_id, price_date.weekEnd() AS end_date, price_date, cumulative_nav AS nav FROM nav_index; // 按照SQL 建表 entity_coe = create_entity_index_coe(iif(entity_type == 'PF', true, false)); t_ei = entity_info.join(entity_info.price_date.weekEnd() AS end_date); cal_index_coe(t_ei, nav_entity, nav_index, entity_coe); return entity_coe; } /* * 匹配BFI, 逻辑和 Java BestFitIndexServiceImpl 类似 * * @param entity_info
: [COLUMNS] entity_id, strategy * @param entity_coe
: [COLUMNS] entity_id, end_date, index_id, coe_1y, t_value_1y, beta_1y * * NOTE: Java 中的 rule2 还包括 FA00000VN7 (100%中证全指 IN0000007N) 是不对的,而且漏掉了CTA和FOF。已将DEV数据库中此因子划入category_group 74;另外找r2最小的因子也离谱 * rule3 FA00000VMX (100%中证转债 中证转债)漏掉了公募债券(FOF, 相对价值(套利),多策略,公募混合是否要加?怕会和股票打架,待研究) * UPDATE pfdb.`cm_factor_information` SET category_group_id = 74, category='全市场', factor_name='全市场', category_group='规模', strategy=',101,102,103,107,', maximum_num=1, updaterid=123, updatetime='2024-11-25' WHERE factor_id = 'FA00000VN7'; UPDATE pfdb.`cm_factor_information` SET category_group_id = 78, category_group='配置', maximum_num=1, updaterid=123, updatetime='2024-11-25' WHERE factor_id = 'FA00000VNB' AND category_group_id = 80; UPDATE pfdb.`cm_factor_information` SET category_group_id = 78, category_group='配置', maximum_num=1, updaterid=123, updatetime='2024-11-25' WHERE factor_id = 'FA00000VND' AND category_group_id = 76; * */ def match_entity_bfi(entity_type, entity_info, entity_coe) { // 特殊因子:现金,可被应用于所有策略 v_factor_cash = ['FA000000MJ']; //有一些特殊的因子只会被部分策略所用, 否则会引起歧义 v_factor_1 = ['FA00000VMY', 'FA00000VMZ', 'FA00000VN0', 'FA00000VN1', 'FA00000VN2', 'FA00000VN3', 'FA00000VN4', 'FA00000VN5', 'FA00000VN6']; v_strategy_1 = [3, 7, 8, 105]; // 私募CTA, 私募FOF, 私募多策略, 公募商品 v_factor_2 = ['FA00000SMB', 'FA00000VMG']; v_strategy_2 = [1, 3, 5, 7, 8]; // 私募股票(多空),CTA, 相对价值,私募FOF, 私募多策略 v_factor_3 = ['FA00000VMX']; v_strategy_3 = [6, 103]; // 私募固收,公募债券 // 只需要BFI因子的相关性数据 coe = SELECT ei.strategy, entity_coe.*, l.* FROM ej(entity_info ei, ej(entity_coe, get_bfi_index_list() AS l, 'index_id', 'factor_id'), 'entity_id') ORDER BY entity_id, end_date, category_group_id, coe_1y DESC, order_id; t_bfi_raw = table(1000:0, ['entity_id', 'end_date', 'category_group_id', 'factor_id', 'rank', 'coe_1y', 'r2', //'rank2', 'coe_1y_2', 'r2_2', 'performance_flag', 't_value_1y', 'beta_1y', 'maximum_num', 'order_id', 'factor_name'], [iif(entity_type=='PF', INT, SYMBOL), MONTH, SHORT, SYMBOL, SHORT, DOUBLE, DOUBLE, //SHORT, DOUBLE, DOUBLE, STRING, DOUBLE, DOUBLE, SHORT, SHORT, STRING]); // 首先处理特殊情况 TODO: java treats rule2 differently by finding min R2 without checking t_value & corr v_special_rule = [v_factor_1, v_factor_2, v_factor_3]; v_special_strategy = [v_strategy_1, v_strategy_2, v_strategy_3]; for(i in 0..v_special_rule.size()-1) { INSERT INTO t_bfi_raw SELECT * FROM ( SELECT entity_id, end_date, category_group_id, index_id AS factor_id, coe_1y.rank(false) AS rank, coe_1y, square(coe_1y) AS r2, 'w', t_value_1y, beta_1y, maximum_num, order_id, factor_name FROM coe WHERE strategy IN v_special_strategy[i] AND index_id IN v_special_rule[i].join(v_factor_cash) AND t_value_1y >= get_min_threshold('t_value') AND coe_1y >= get_min_threshold('correlation') AND order_id IS NOT NULL CONTEXT BY entity_id, end_date, category_group_id ) WHERE rank < maximum_num; DELETE FROM coe WHERE index_id IN v_special_rule[i]; } INSERT INTO t_bfi_raw SELECT * FROM ( SELECT entity_id, end_date, category_group_id, index_id AS factor_id, coe_1y.rank(false) AS rank, coe_1y, square(coe_1y) AS r2, 'w', t_value_1y, beta_1y, maximum_num, order_id, factor_name FROM coe WHERE t_value_1y >= get_min_threshold('t_value') AND coe_1y >= get_min_threshold('correlation') AND order_id IS NOT NULL CONTEXT BY entity_id, end_date, category_group_id ) WHERE rank < maximum_num; return SELECT * FROM t_bfi_raw ORDER BY entity_id, end_date, category_group_id; } /* * 计算基金经理和各资产类别指数及BFI因子的累计净值相关系数 (用月收益计算) * 参考基金/组合的 cal_entity_index_coe 和 match_entity_bfi 的主要代码 * * @param entity_info
: [COLUMNS] entity_id, curve_type, strategy, price_date * * * Example: match_mc_bfi('PL', get_personnel_info_for_perf(['PL000000AN', 'PL00000JOU']).join(take(2024.05.30, 5) AS price_date).rename!('manager_id', 'entity_id')); * */ def match_mc_bfi(entity_type, entity_info) { if(entity_info.isVoid() || entity_info.size() == 0) return null; // 取数据集中最早日期作为因子的起始日期 start_day = entity_info.price_date.min(); // 取数据集每个基金组合指定日期之前5年至今的周净值 s_json = (SELECT entity_id, curve_type, strategy, price_date.temporalAdd(-5y).temporalFormat('yyyy-MM') AS end_date FROM entity_info).toStdJson(); nav_entity = get_mc_nav_for_return_calculation(entity_type, s_json, 2); if(nav_entity.isVoid() || nav_entity.size() == 0) return null; // fund_manager_fitted_curve 和 company_fitted_curve 表里没有price_date, 这里用 businessMonthEnd 日期填充 nav_entity = SELECT entity_id, curve_type, strategy, temporalParse(end_date, 'yyyy-MM').month() AS end_date, temporalParse(end_date+'-01', 'yyyy-MM-dd').businessMonthEnd() AS price_date, cumulative_nav AS nav FROM nav_entity; // 取相关性计算及BFI用得到的指数/因子列表 // 只有基金需要单独做相关性计算,目的是为基金推荐做数据准备 v_indexes = get_bfi_index_list().factor_id; s_json2 = table(v_indexes AS sec_id, take(start_day.temporalAdd(-5y), v_indexes.size()) AS price_date).toStdJson(); // 取指数及因子周点位 nav_index = get_nav_for_return_calculation('FA', 'm', s_json2).unionAll(get_nav_for_return_calculation('MI', 'm', s_json2)); nav_index = SELECT sec_id AS entity_id, price_date.month() AS end_date, price_date, cumulative_nav AS nav FROM nav_index; // 按照SQL 建表 t_factor_bfi = create_mc_factor_bfi(); v_curve_type = [1, 4, 7]; for(cur in v_curve_type) { t_ei = SELECT entity_id, price_date.month() AS end_date, price_date FROM entity_info WHERE curve_type = cur AND strategy = 0; t_ne = SELECT entity_id, end_date, price_date, nav FROM nav_entity WHERE curve_type = cur AND strategy = 0; t_coe = create_mc_index_coe().dropColumns!(['curve_type', 'strategy']); cal_index_coe(t_ei, t_ne, nav_index, t_coe); // 基金经理/公司全策略暂时借用公募混合基金的策略ID 102 t_ei.join!(take(102, t_ei.size()) AS strategy); t_bfi_raw = match_entity_bfi(entity_type, t_ei, t_coe); if(t_bfi_raw.isVoid() || t_bfi_raw.size() == 0) continue; INSERT INTO t_factor_bfi SELECT entity_id, cur, 0 AS strategy, end_date, factor_id, coe_1y AS coe, r2 AS r2, 'm' AS performance_flag, t_value_1y, beta_1y FROM t_bfi_raw; } return t_factor_bfi; }