module fundit::bfiMatcher
use fundit::sqlUtilities;
use fundit::operationDataPuller;
use fundit::performanceDataPuller;
use fundit::dataSaver;
/*
* 返回预设的指标最小值
*
* NOTE: 对数据量的要求, Java 计算coe相关性表时用48,但计算bfi时用10,这里统一用10
*
*/
def get_min_threshold(data_name) {
d = dict(STRING, FLOAT);
d['correlation'] = 0.64;
d['data_count'] = 10;
d['beta'] = 0.64;
d['t_value'] = 2.58;
d['r2'] = 0.64;
d['r2_neutral'] = 0.04;
return d[data_name];
}
/*
* T-value 的聚合函数版
*
*/
defg regressionT(y, x) {
r = SELECT beta, tstat FROM ols(y, x, true, 1) WHERE rowNo(beta) = 1;
return r[0]['tstat'];
}
/*
* 计算 correlation & bfi-matching 所需要的数据指标(周数据计算,返回月度结果)
*
* NOTE: 与 Java BFI 不同,这里为了与RBSA保持统一,用收益率来计算相关性;转化成月度时用了各周平均值
*/
def cal_monthly_closity(entity, nav1, nav2, win) {
n1 = nav1;
n1.sortBy!(['entity_id', 'price_date'], [1, 1]);
n2 = nav2;
n2.sortBy!(['benchmark_id', 'price_date'], [1, 1]);
t_dates = SELECT entity_id, end_date, price_date FROM nav1 WHERE end_date >= entity.end_date;
t0 = SELECT entity_id, end_date, n1.nav AS nav1, n1.nav.ratios()-1 AS ret1,
n2.nav AS nav2, n2.nav.ratios()-1 AS ret2, tmoving(count, end_date, end_date, win) AS data_count
FROM n1
INNER JOIN n2 ON n1.end_date = n2.end_date
ORDER BY end_date;
t_rt = table(100:0, ['entity_id', 'end_date', 'price_date', 'corr', /* 'info', */ 't_value', 'beta'],
[entity.entity_id.type(), t_dates.end_date[0].type(), DATE, DOUBLE, /* DOUBLE, */ DOUBLE, DOUBLE]);
for(dt in t_dates) {
if( (EXEC data_count FROM t0 WHERE end_date = dt.end_date)[0] >= get_min_threshold('data_count') ){
rets = EXEC ret1, ret2 FROM t0 WHERE end_date BETWEEN(dt.end_date.temporalAdd(duration('-' + win$STRING)):dt.end_date);
cor = corr(rets.ret1, rets.ret2);
// info = mean(rets.ret1 - rets.ret2) \ std(rets.ret1 - rets.ret2); // 貌似没用
t_value = regressionT(rets.ret1, rets.ret2);
bta = beta(rets.ret1, rets.ret2); // 用 ols() 算的值和这个一样
INSERT INTO t_rt VALUES (entity.entity_id, dt.end_date, dt.price_date, cor, /*info ,*/ t_value, bta);
}
}
// 将每月各周的数据平均值作为月度数据返回
return SELECT entity_id, price_date.month().last() AS end_date, price_date.last() AS price_date,
corr.avg() AS corr,
// info.avg() AS info,
t_value.avg() AS t_value,
beta.avg() AS beta
FROM t_rt
GROUP BY entity_id, price_date.month();
}
/*
* 计算目标和各资产类别指数及BFI因子的累计净值相关系数
*
* @param entity_info
: [COLUMNS] entity_id, end_date, price_date (这个 price_date 是需要计算的最早 price_date)
* @param nav_entity : [COLUMNS] entity_id, end_date, price_date, nav
* @param nav_index : [COLUMNS] entity_id, end_date, price_date, nav
* @param entity_coe OUT : [COLUMNS] entity_id, end_date, index_id, coe_1y, coe_3y, coe_5y, t_value_1y, t_value_3y, t_value_5y, beta_1y, beta_3y, beta_5y
*
* NOTE: 1)整合 Java中 TampCalcCorrelationServiceImpl 和 BestFitIndexServiceImpl 做的计算, 取消了没用的 info_ratio
* 2)周度数据时,nav表中的 end_date=price_date.weekEnd(); 月度数据时, end_date=price_date.month()
* 3)暂时保留取NAV,现算return的方法
*
*/
def cal_index_coe(entity_info, nav_entity, nav_index, mutable entity_coe) {
if(nav_entity.isVoid() || nav_entity.size() == 0 || nav_index.isVoid() || nav_index.size() == 0) return null;
v_indexes = nav_index.entity_id.distinct();
// 两次循环遍历所有entity和指数
for(entity in entity_info) {
//entity= entity_info[0]
nav1 = SELECT entity_id, end_date, price_date, nav
FROM nav_entity WHERE entity_id = entity.entity_id;
for(index in v_indexes) {
//index=v_indexes[0]
nav2 = SELECT entity_id AS benchmark_id, end_date, price_date, nav
FROM nav_index WHERE entity_id = index;
if(nav2.isVoid() || nav2.size() == 0) continue; // 忽略已经停止更新的指数,或者是特殊的无风险利率 IN0000000M
closity_1y = cal_monthly_closity(entity, nav1, nav2, 1y);
closity_3y = cal_monthly_closity(entity, nav1, nav2, 3y);
closity_5y = cal_monthly_closity(entity, nav1, nav2, 5y);
INSERT INTO entity_coe
SELECT c1.entity_id, c1.end_date, index,
c1.corr AS coe_1y, c3.corr AS coe_3y, c5.corr AS coe_5y,
//c1.corr2 AS coe_1y_2, c3.corr2 AS coe_3y_2, c5.corr2 AS coe_5y_2,
//c1.info AS info_ratio_1y, c3.info AS info_ratio_3y, c5.info AS info_ratio_5y,
c1.t_value AS t_value_1y, c3.t_value AS t_value_3y, c5.t_value AS t_value_5y,
c1.beta AS beta_1y, c3.beta AS beta_3y, c5.beta AS beta_5y
FROM closity_1y c1
LEFT JOIN closity_3y c3 ON c1.end_date = c3.end_date
LEFT JOIN closity_5y c5 ON c1.end_date = c5.end_date;
}
}
}
/*
* 计算基金/组合和各资产类别指数及BFI因子的累计净值相关系数 (用周收益计算)
*
* @param entity_info : [COLUMNS] entity_id, price_date
*
* NOTE: 整合 Java中 TampCalcCorrelationServiceImpl 和 BestFitIndexServiceImpl 做的计算
*
* Example: cal_entity_index_coe('MF', get_fund_info(['MF00003PW1', 'MF00003PW2', 'MF00003RZI']).join(take(2024.09.30, 3) AS price_date).rename!('fund_id', 'entity_id'));
* cal_entity_index_coe('PF', get_portfolio_info([166002]).join(take(2024.09.30, 1) AS price_date).rename!('portfolio_id', 'entity_id'));
*
*/
def cal_entity_index_coe(entity_type, entity_info) {
if(entity_info.isVoid() || entity_info.size() == 0) return null;
// 取数据集中最早日期作为因子的起始日期
start_day = entity_info.price_date.min();
// 取数据集每个基金组合指定日期之前5年至今的周净值
s_json = (SELECT entity_id AS sec_id, price_date.temporalAdd(-5y) AS price_date FROM entity_info).toStdJson();
nav_entity = get_nav_for_return_calculation(entity_type, 'w', s_json);
if(nav_entity.isVoid() || nav_entity.size() == 0) return null;
nav_entity = SELECT sec_id AS entity_id, price_date.weekEnd() AS end_date, price_date, cumulative_nav AS nav FROM nav_entity;
// 取相关性计算及BFI用得到的指数/因子列表
// 只有基金需要单独做相关性计算,目的是为基金推荐做数据准备
if(entity_type in ('MF', 'HF'))
v_indexes = (get_bfi_index_list().factor_id <- get_correlation_index_list().entity_id).distinct();
else {
v_indexes = get_bfi_index_list().factor_id;
// Portfolio_id 改回整型
v_port_id = nav_entity.entity_id$INT;
nav_entity.replaceColumn!('entity_id', v_port_id);
}
s_json2 = table(v_indexes AS sec_id, take(start_day.temporalAdd(-5y), v_indexes.size()) AS price_date).toStdJson();
// 取指数及因子周点位
nav_index = get_nav_for_return_calculation('FA', 'w', s_json2).unionAll(get_nav_for_return_calculation('MI', 'w', s_json2));
nav_index = SELECT sec_id AS entity_id, price_date.weekEnd() AS end_date, price_date, cumulative_nav AS nav FROM nav_index;
// 按照SQL 建表
entity_coe = create_entity_index_coe(iif(entity_type == 'PF', true, false));
t_ei = entity_info.join(entity_info.price_date.weekEnd() AS end_date);
cal_index_coe(t_ei, nav_entity, nav_index, entity_coe);
return entity_coe;
}
/*
* 匹配BFI, 逻辑和 Java BestFitIndexServiceImpl 类似
*
* @param entity_info : [COLUMNS] entity_id, strategy
* @param entity_coe : [COLUMNS] entity_id, end_date, index_id, coe_1y, t_value_1y, beta_1y
*
* NOTE: Java 中的 rule2 还包括 FA00000VN7 (100%中证全指 IN0000007N) 是不对的,而且漏掉了CTA和FOF。已将DEV数据库中此因子划入category_group 74;另外找r2最小的因子也离谱
* rule3 FA00000VMX (100%中证转债 中证转债)漏掉了公募债券(FOF, 相对价值(套利),多策略,公募混合是否要加?怕会和股票打架,待研究)
*
UPDATE pfdb.`cm_factor_information`
SET category_group_id = 74, category='全市场', factor_name='全市场', category_group='规模', strategy=',101,102,103,107,', maximum_num=1, updaterid=123, updatetime='2024-11-25'
WHERE factor_id = 'FA00000VN7';
UPDATE pfdb.`cm_factor_information`
SET category_group_id = 78, category_group='配置', maximum_num=1, updaterid=123, updatetime='2024-11-25'
WHERE factor_id = 'FA00000VNB' AND category_group_id = 80;
UPDATE pfdb.`cm_factor_information`
SET category_group_id = 78, category_group='配置', maximum_num=1, updaterid=123, updatetime='2024-11-25'
WHERE factor_id = 'FA00000VND' AND category_group_id = 76;
*
*/
def match_entity_bfi(entity_type, entity_info, entity_coe) {
// 特殊因子:现金,可被应用于所有策略
v_factor_cash = ['FA000000MJ'];
//有一些特殊的因子只会被部分策略所用, 否则会引起歧义
v_factor_1 = ['FA00000VMY', 'FA00000VMZ', 'FA00000VN0', 'FA00000VN1', 'FA00000VN2', 'FA00000VN3', 'FA00000VN4', 'FA00000VN5', 'FA00000VN6'];
v_strategy_1 = [3, 7, 8, 105]; // 私募CTA, 私募FOF, 私募多策略, 公募商品
v_factor_2 = ['FA00000SMB', 'FA00000VMG'];
v_strategy_2 = [1, 3, 5, 7, 8]; // 私募股票(多空),CTA, 相对价值,私募FOF, 私募多策略
v_factor_3 = ['FA00000VMX'];
v_strategy_3 = [6, 103]; // 私募固收,公募债券
// 只需要BFI因子的相关性数据
coe = SELECT ei.strategy, entity_coe.*, l.*
FROM ej(entity_info ei, ej(entity_coe, get_bfi_index_list() AS l, 'index_id', 'factor_id'), 'entity_id')
ORDER BY entity_id, end_date, category_group_id, coe_1y DESC, order_id;
t_bfi_raw = table(1000:0,
['entity_id', 'end_date', 'category_group_id', 'factor_id', 'rank', 'coe_1y', 'r2',
//'rank2', 'coe_1y_2', 'r2_2',
'performance_flag', 't_value_1y', 'beta_1y', 'maximum_num', 'order_id', 'factor_name'],
[iif(entity_type=='PF', INT, SYMBOL), MONTH, SHORT, SYMBOL, SHORT, DOUBLE, DOUBLE,
//SHORT, DOUBLE, DOUBLE,
STRING, DOUBLE, DOUBLE, SHORT, SHORT, STRING]);
// 首先处理特殊情况 TODO: java treats rule2 differently by finding min R2 without checking t_value & corr
v_special_rule = [v_factor_1, v_factor_2, v_factor_3];
v_special_strategy = [v_strategy_1, v_strategy_2, v_strategy_3];
for(i in 0..v_special_rule.size()-1) {
INSERT INTO t_bfi_raw
SELECT * FROM (
SELECT entity_id, end_date, category_group_id, index_id AS factor_id,
coe_1y.rank(false) AS rank, coe_1y, square(coe_1y) AS r2,
'w', t_value_1y, beta_1y,
maximum_num, order_id, factor_name
FROM coe
WHERE strategy IN v_special_strategy[i]
AND index_id IN v_special_rule[i].join(v_factor_cash)
AND t_value_1y >= get_min_threshold('t_value')
AND coe_1y >= get_min_threshold('correlation')
AND order_id IS NOT NULL
CONTEXT BY entity_id, end_date, category_group_id )
WHERE rank < maximum_num;
DELETE FROM coe WHERE index_id IN v_special_rule[i];
}
INSERT INTO t_bfi_raw
SELECT * FROM (
SELECT entity_id, end_date, category_group_id, index_id AS factor_id,
coe_1y.rank(false) AS rank, coe_1y, square(coe_1y) AS r2,
'w', t_value_1y, beta_1y,
maximum_num, order_id, factor_name
FROM coe
WHERE t_value_1y >= get_min_threshold('t_value')
AND coe_1y >= get_min_threshold('correlation')
AND order_id IS NOT NULL
CONTEXT BY entity_id, end_date, category_group_id )
WHERE rank < maximum_num;
return SELECT * FROM t_bfi_raw ORDER BY entity_id, end_date, category_group_id;
}
/*
* 计算基金经理和各资产类别指数及BFI因子的累计净值相关系数 (用月收益计算)
* 参考基金/组合的 cal_entity_index_coe 和 match_entity_bfi 的主要代码
*
* @param entity_info : [COLUMNS] entity_id, curve_type, strategy, price_date
*
*
* Example: match_mc_bfi('PL', get_personnel_info_for_perf(['PL000000AN', 'PL00000JOU']).join(take(2024.05.30, 5) AS price_date).rename!('manager_id', 'entity_id'));
*
*/
def match_mc_bfi(entity_type, entity_info) {
if(entity_info.isVoid() || entity_info.size() == 0) return null;
// 取数据集中最早日期作为因子的起始日期
start_day = entity_info.price_date.min();
// 取数据集每个基金组合指定日期之前5年至今的周净值
s_json = (SELECT entity_id, curve_type, strategy, price_date.temporalAdd(-5y).temporalFormat('yyyy-MM') AS end_date FROM entity_info).toStdJson();
nav_entity = get_mc_nav_for_return_calculation(entity_type, s_json, 2);
if(nav_entity.isVoid() || nav_entity.size() == 0) return null;
// fund_manager_fitted_curve 和 company_fitted_curve 表里没有price_date, 这里用 businessMonthEnd 日期填充
nav_entity = SELECT entity_id, curve_type, strategy,
temporalParse(end_date, 'yyyy-MM').month() AS end_date,
temporalParse(end_date+'-01', 'yyyy-MM-dd').businessMonthEnd() AS price_date, cumulative_nav AS nav
FROM nav_entity;
// 取相关性计算及BFI用得到的指数/因子列表
// 只有基金需要单独做相关性计算,目的是为基金推荐做数据准备
v_indexes = get_bfi_index_list().factor_id;
s_json2 = table(v_indexes AS sec_id, take(start_day.temporalAdd(-5y), v_indexes.size()) AS price_date).toStdJson();
// 取指数及因子周点位
nav_index = get_nav_for_return_calculation('FA', 'm', s_json2).unionAll(get_nav_for_return_calculation('MI', 'm', s_json2));
nav_index = SELECT sec_id AS entity_id, price_date.month() AS end_date, price_date, cumulative_nav AS nav FROM nav_index;
// 按照SQL 建表
t_factor_bfi = create_mc_factor_bfi();
v_curve_type = [1, 4, 7];
for(cur in v_curve_type) {
t_ei = SELECT entity_id, price_date.month() AS end_date, price_date FROM entity_info WHERE curve_type = cur AND strategy = 0;
t_ne = SELECT entity_id, end_date, price_date, nav FROM nav_entity WHERE curve_type = cur AND strategy = 0;
t_coe = create_mc_index_coe().dropColumns!(['curve_type', 'strategy']);
cal_index_coe(t_ei, t_ne, nav_index, t_coe);
// 基金经理/公司全策略暂时借用公募混合基金的策略ID 102
t_ei.join!(take(102, t_ei.size()) AS strategy);
t_bfi_raw = match_entity_bfi(entity_type, t_ei, t_coe);
if(t_bfi_raw.isVoid() || t_bfi_raw.size() == 0) continue;
INSERT INTO t_factor_bfi
SELECT entity_id, cur, 0 AS strategy, end_date, factor_id, coe_1y AS coe, r2 AS r2, 'm' AS performance_flag, t_value_1y, beta_1y
FROM t_bfi_raw;
}
return t_factor_bfi;
}