rankingCalculator.dos 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064
  1. module fundit::rankingCalculator
  2. use fundit::sqlUtilities
  3. use fundit::dataPuller
  4. use fundit::dataSaver
  5. /*
  6. * 汇集所有参与排名的指标信息
  7. *
  8. */
  9. def get_indicator_info() {
  10. ids = [1,
  11. 2, 6, 9, 10, 11, 12, 21, 50, 52, 59,
  12. 14, 15, 16, 17, 18, 19, 40, 58,
  13. 37, 38, 41, 42, 43, 44, 45, 46, 47, 48, 49,
  14. 33, 34, 35, 36,
  15. 66, 53, 54, 55, 56, 57
  16. ];
  17. names = ['ret',
  18. 'maxdrawdown', 'kurtosis', 'skewness', 'stddev', 'alpha', 'beta', 'downsidedev', 'maxdrawdown_months', 'maxdrawdown_recoverymonths', 'winrate',
  19. 'kapparatio', 'treynorratio', 'jensen', 'omegaratio', 'sharperatio', 'sortinoratio_MAR', 'calmarratio', 'sortinoratio',
  20. 'per_con', 'info_ratio', 'var', 'cvar', 'smddvar', 'smddcvar', 'smdd_lpm1', 'smdd_lpm2', 'smdd_downside_dev', 'tracking_error', 'm2',
  21. 'upsidecapture_ret', 'downsidecapture_ret', 'upsidecapture_ratio', 'downsidecapture_ratio',
  22. 'stability', 'jc_stddev', 'gzstyle_stddev', 'gzstrategy_stddev', 'zz_stddev', 'zx_stddev'
  23. ];
  24. is_ASCs = [false,
  25. true, true, false, true, false, false, true, true, true, false,
  26. false, false, false, false, false, false, false, false,
  27. false, false, true, true, true, true, true, true, true, true, false,
  28. false, false, false, true,
  29. true, true, true, true, true, true
  30. ];
  31. return table(names AS name, ids AS id, is_ASCs AS is_ASC);
  32. }
  33. /*
  34. * 计算收益率排名
  35. *
  36. * TODO: 整合入 gen_ranking_sql
  37. */
  38. def cal_ret_ranking(entity_type, entity_info, end_date, isFromMySQL) {
  39. // 当前只对基金做排名, 其它类型参考基金排名做相对排名
  40. if(!(entity_type in ['MF', 'HF'])) return null;
  41. table_desc = get_performance_table_description(entity_type);
  42. tb_data = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
  43. sec_id_col = table_desc.sec_id_col[0];
  44. tb_data.rename!(sec_id_col, 'entity_id');
  45. tb_strategy = get_strategy_list();
  46. tb_substrategy = get_substrategy_list();
  47. t = SELECT *
  48. FROM entity_info en
  49. INNER JOIN tb_data d ON en.entity_id = d.entity_id
  50. WHERE en.strategy IS NOT NULL
  51. AND (en.entity_id LIKE 'MF%' OR en.entity_id LIKE 'HF%')
  52. // 按照 MySQL 字段建表
  53. t_s = create_entity_indicator_ranking(false);
  54. t_s_num = create_entity_indicator_ranking_num(false);
  55. t_ss = create_entity_indicator_substrategy_ranking(false);
  56. t_ss_num = create_entity_indicator_substrategy_ranking_num(false);
  57. v_tables = [t_s, t_s_num, t_ss, t_ss_num];
  58. v_tables[0] = SELECT entity_id, end_date, strategy, 1 AS indicator_id,
  59. ret_1m AS indicator_1m, ret_1m.rank(false) AS absrank_1m, (ret_1m.rank(false, percent=true)*100).round(0) AS perrank_1m,
  60. ret_3m AS indicator_3m, ret_3m.rank(false) AS absrank_3m, (ret_3m.rank(false, percent=true)*100).round(0) AS perrank_3m,
  61. ret_6m AS indicator_6m, ret_6m.rank(false) AS absrank_6m, (ret_6m.rank(false, percent=true)*100).round(0) AS perrank_6m,
  62. ret_1y AS indicator_1y, ret_1y.rank(false) AS absrank_1y, (ret_1y.rank(false, percent=true)*100).round(0) AS perrank_1y,
  63. ret_2y AS indicator_2y, ret_2y.rank(false) AS absrank_2y, (ret_2y.rank(false, percent=true)*100).round(0) AS perrank_2y,
  64. ret_3y AS indicator_3y, ret_3y.rank(false) AS absrank_3y, (ret_3y.rank(false, percent=true)*100).round(0) AS perrank_3y,
  65. ret_5y AS indicator_5y, ret_5y.rank(false) AS absrank_5y, (ret_5y.rank(false, percent=true)*100).round(0) AS perrank_5y,
  66. ret_10y AS indicator_10y, ret_10y.rank(false) AS absrank_10y, (ret_10y.rank(false, percent=true)*100).round(0) AS perrank_10y,
  67. ret_ytd AS indicator_ytd, ret_ytd.rank(false) AS absrank_ytd, (ret_ytd.rank(false, percent=true)*100).round(0) AS perrank_ytd
  68. FROM t CONTEXT BY strategy, end_date;
  69. v_tables[1] = SELECT t.end_date, t.strategy, s.raise_type[0], 1 AS indicator_id,
  70. ret_1m.mean() AS avg_1m, ret_1m.count() AS avg_1m_cnt, ret_1m.percentile(95) AS perrank_percent_5_1m,
  71. ret_1m.percentile(90) AS perrank_percent_10_1m, ret_1m.percentile(75) AS perrank_percent_25_1m,
  72. ret_1m.percentile(50) AS perrank_percent_50_1m, ret_1m.percentile(25) AS perrank_percent_75_1m,
  73. ret_1m.percentile(10) AS perrank_percent_90_1m, ret_1m.percentile(5) AS perrank_percent_95_1m,
  74. ret_1m.max() AS best_1m, ret_1m.min() AS worst_1m,
  75. ret_3m.mean() AS avg_3m, ret_3m.count() AS avg_3m_cnt, ret_3m.percentile(95) AS perrank_percent_5_3m,
  76. ret_3m.percentile(90) AS perrank_percent_10_3m, ret_3m.percentile(75) AS perrank_percent_25_3m,
  77. ret_3m.percentile(50) AS perrank_percent_50_3m, ret_3m.percentile(25) AS perrank_percent_75_3m,
  78. ret_3m.percentile(10) AS perrank_percent_90_3m, ret_3m.percentile(5) AS perrank_percent_95_3m,
  79. ret_3m.max() AS best_3m, ret_3m.min() AS worst_3m,
  80. ret_6m.mean() AS avg_6m, ret_6m.count() AS avg_6m_cnt, ret_6m.percentile(95) AS perrank_percent_5_6m,
  81. ret_6m.percentile(90) AS perrank_percent_10_6m, ret_6m.percentile(75) AS perrank_percent_25_6m,
  82. ret_6m.percentile(50) AS perrank_percent_50_6m, ret_6m.percentile(25) AS perrank_percent_75_6m,
  83. ret_6m.percentile(10) AS perrank_percent_90_6m, ret_6m.percentile(5) AS perrank_percent_95_6m,
  84. ret_6m.max() AS best_6m, ret_6m.min() AS worst_6m,
  85. ret_1y.mean() AS avg_1y, ret_1y.count() AS avg_1y_cnt, ret_1y.percentile(95) AS perrank_percent_5_1y,
  86. ret_1y.percentile(90) AS perrank_percent_10_1y, ret_1y.percentile(75) AS perrank_percent_25_1y,
  87. ret_1y.percentile(50) AS perrank_percent_50_1y, ret_1y.percentile(25) AS perrank_percent_75_1y,
  88. ret_1y.percentile(10) AS perrank_percent_90_1y, ret_1y.percentile(5) AS perrank_percent_95_1y,
  89. ret_1y.max() AS best_1y, ret_1y.min() AS worst_1y,
  90. ret_2y.mean() AS avg_2y, ret_2y.count() AS avg_2y_cnt, ret_2y.percentile(95) AS perrank_percent_5_2y,
  91. ret_2y.percentile(90) AS perrank_percent_10_2y, ret_2y.percentile(75) AS perrank_percent_25_2y,
  92. ret_2y.percentile(50) AS perrank_percent_50_2y, ret_2y.percentile(25) AS perrank_percent_75_2y,
  93. ret_2y.percentile(10) AS perrank_percent_90_2y, ret_2y.percentile(5) AS perrank_percent_95_2y,
  94. ret_2y.max() AS best_2y, ret_2y.min() AS worst_2y,
  95. ret_3y.mean() AS avg_3y, ret_3y.count() AS avg_3y_cnt, ret_3y.percentile(95) AS perrank_percent_5_3y,
  96. ret_3y.percentile(90) AS perrank_percent_10_3y, ret_3y.percentile(75) AS perrank_percent_25_3y,
  97. ret_3y.percentile(50) AS perrank_percent_50_3y, ret_3y.percentile(25) AS perrank_percent_75_3y,
  98. ret_3y.percentile(10) AS perrank_percent_90_3y, ret_3y.percentile(5) AS perrank_percent_95_3y,
  99. ret_3y.max() AS best_3y, ret_3y.min() AS worst_3y,
  100. ret_5y.mean() AS avg_5y, ret_5y.count() AS avg_5y_cnt, ret_5y.percentile(95) AS perrank_percent_5_5y,
  101. ret_5y.percentile(90) AS perrank_percent_10_5y, ret_5y.percentile(75) AS perrank_percent_25_5y,
  102. ret_5y.percentile(50) AS perrank_percent_50_5y, ret_5y.percentile(25) AS perrank_percent_75_5y,
  103. ret_5y.percentile(10) AS perrank_percent_90_5y, ret_5y.percentile(5) AS perrank_percent_95_5y,
  104. ret_5y.max() AS best_5y, ret_5y.min() AS worst_5y,
  105. ret_10y.mean() AS avg_10y, ret_10y.count() AS avg_10y_cnt, ret_10y.percentile(95) AS perrank_percent_5_10y,
  106. ret_10y.percentile(90) AS perrank_percent_10_10y, ret_10y.percentile(75) AS perrank_percent_25_10y,
  107. ret_10y.percentile(50) AS perrank_percent_50_10y, ret_10y.percentile(25) AS perrank_percent_75_10y,
  108. ret_10y.percentile(10) AS perrank_percent_90_10y, ret_10y.percentile(5) AS perrank_percent_95_10y,
  109. ret_10y.max() AS best_10y, ret_10y.min() AS worst_10y,
  110. ret_ytd.mean() AS avg_ytd, ret_ytd.count() AS avg_ytd_cnt, ret_ytd.percentile(95) AS perrank_percent_5_ytd,
  111. ret_ytd.percentile(90) AS perrank_percent_10_ytd, ret_ytd.percentile(75) AS perrank_percent_25_ytd,
  112. ret_ytd.percentile(50) AS perrank_percent_50_ytd, ret_ytd.percentile(25) AS perrank_percent_75_ytd,
  113. ret_ytd.percentile(10) AS perrank_percent_90_ytd, ret_ytd.percentile(5) AS perrank_percent_95_ytd,
  114. ret_ytd.max() AS best_ytd, ret_ytd.min() AS worst_ytd
  115. FROM t
  116. INNER JOIN tb_strategy s ON t.strategy = s.strategy_id
  117. GROUP BY t.strategy, t.end_date;
  118. v_tables[2] = SELECT entity_id, end_date, substrategy, 1 AS indicator_id,
  119. ret_1m AS indicator_1m, ret_1m.rank(false) AS absrank_1m, (ret_1m.rank(false, percent=true)*100).round(0) AS perrank_1m,
  120. ret_3m AS indicator_3m, ret_3m.rank(false) AS absrank_3m, (ret_3m.rank(false, percent=true)*100).round(0) AS perrank_3m,
  121. ret_6m AS indicator_6m, ret_6m.rank(false) AS absrank_6m, (ret_6m.rank(false, percent=true)*100).round(0) AS perrank_6m,
  122. ret_1y AS indicator_1y, ret_1y.rank(false) AS absrank_1y, (ret_1y.rank(false, percent=true)*100).round(0) AS perrank_1y,
  123. ret_2y AS indicator_2y, ret_2y.rank(false) AS absrank_2y, (ret_2y.rank(false, percent=true)*100).round(0) AS perrank_2y,
  124. ret_3y AS indicator_3y, ret_3y.rank(false) AS absrank_3y, (ret_3y.rank(false, percent=true)*100).round(0) AS perrank_3y,
  125. ret_5y AS indicator_5y, ret_5y.rank(false) AS absrank_5y, (ret_5y.rank(false, percent=true)*100).round(0) AS perrank_5y,
  126. ret_10y AS indicator_10y, ret_10y.rank(false) AS absrank_10y, (ret_10y.rank(false, percent=true)*100).round(0) AS perrank_10y,
  127. ret_ytd AS indicator_ytd, ret_ytd.rank(false) AS absrank_ytd, (ret_ytd.rank(false, percent=true)*100).round(0) AS perrank_ytd
  128. FROM t CONTEXT BY substrategy, end_date;
  129. v_tables[3] = SELECT t.end_date, t.substrategy, s.raise_type[0], 1 AS indicator_id,
  130. ret_1m.mean() AS avg_1m, ret_1m.count() AS avg_1m_cnt, ret_1m.percentile(95) AS perrank_percent_5_1m,
  131. ret_1m.percentile(90) AS perrank_percent_10_1m, ret_1m.percentile(75) AS perrank_percent_25_1m,
  132. ret_1m.percentile(50) AS perrank_percent_50_1m, ret_1m.percentile(25) AS perrank_percent_75_1m,
  133. ret_1m.percentile(10) AS perrank_percent_90_1m, ret_1m.percentile(5) AS perrank_percent_95_1m,
  134. ret_1m.max() AS best_1m, ret_1m.min() AS worst_1m,
  135. ret_3m.mean() AS avg_3m, ret_3m.count() AS avg_3m_cnt, ret_3m.percentile(95) AS perrank_percent_5_3m,
  136. ret_3m.percentile(90) AS perrank_percent_10_3m, ret_3m.percentile(75) AS perrank_percent_25_3m,
  137. ret_3m.percentile(50) AS perrank_percent_50_3m, ret_3m.percentile(25) AS perrank_percent_75_3m,
  138. ret_3m.percentile(10) AS perrank_percent_90_3m, ret_3m.percentile(5) AS perrank_percent_95_3m,
  139. ret_3m.max() AS best_3m, ret_3m.min() AS worst_3m,
  140. ret_6m.mean() AS avg_6m, ret_6m.count() AS avg_6m_cnt, ret_6m.percentile(95) AS perrank_percent_5_6m,
  141. ret_6m.percentile(90) AS perrank_percent_10_6m, ret_6m.percentile(75) AS perrank_percent_25_6m,
  142. ret_6m.percentile(50) AS perrank_percent_50_6m, ret_6m.percentile(25) AS perrank_percent_75_6m,
  143. ret_6m.percentile(10) AS perrank_percent_90_6m, ret_6m.percentile(5) AS perrank_percent_95_6m,
  144. ret_6m.max() AS best_6m, ret_6m.min() AS worst_6m,
  145. ret_1y.mean() AS avg_1y, ret_1y.count() AS avg_1y_cnt, ret_1y.percentile(95) AS perrank_percent_5_1y,
  146. ret_1y.percentile(90) AS perrank_percent_10_1y, ret_1y.percentile(75) AS perrank_percent_25_1y,
  147. ret_1y.percentile(50) AS perrank_percent_50_1y, ret_1y.percentile(25) AS perrank_percent_75_1y,
  148. ret_1y.percentile(10) AS perrank_percent_90_1y, ret_1y.percentile(5) AS perrank_percent_95_1y,
  149. ret_1y.max() AS best_1y, ret_1y.min() AS worst_1y,
  150. ret_2y.mean() AS avg_2y, ret_2y.count() AS avg_2y_cnt, ret_2y.percentile(95) AS perrank_percent_5_2y,
  151. ret_2y.percentile(90) AS perrank_percent_10_2y, ret_2y.percentile(75) AS perrank_percent_25_2y,
  152. ret_2y.percentile(50) AS perrank_percent_50_2y, ret_2y.percentile(25) AS perrank_percent_75_2y,
  153. ret_2y.percentile(10) AS perrank_percent_90_2y, ret_2y.percentile(5) AS perrank_percent_95_2y,
  154. ret_2y.max() AS best_2y, ret_2y.min() AS worst_2y,
  155. ret_3y.mean() AS avg_3y, ret_3y.count() AS avg_3y_cnt, ret_3y.percentile(95) AS perrank_percent_5_3y,
  156. ret_3y.percentile(90) AS perrank_percent_10_3y, ret_3y.percentile(75) AS perrank_percent_25_3y,
  157. ret_3y.percentile(50) AS perrank_percent_50_3y, ret_3y.percentile(25) AS perrank_percent_75_3y,
  158. ret_3y.percentile(10) AS perrank_percent_90_3y, ret_3y.percentile(5) AS perrank_percent_95_3y,
  159. ret_3y.max() AS best_3y, ret_3y.min() AS worst_3y,
  160. ret_5y.mean() AS avg_5y, ret_5y.count() AS avg_5y_cnt, ret_5y.percentile(95) AS perrank_percent_5_5y,
  161. ret_5y.percentile(90) AS perrank_percent_10_5y, ret_5y.percentile(75) AS perrank_percent_25_5y,
  162. ret_5y.percentile(50) AS perrank_percent_50_5y, ret_5y.percentile(25) AS perrank_percent_75_5y,
  163. ret_5y.percentile(10) AS perrank_percent_90_5y, ret_5y.percentile(5) AS perrank_percent_95_5y,
  164. ret_5y.max() AS best_5y, ret_5y.min() AS worst_5y,
  165. ret_10y.mean() AS avg_10y, ret_10y.count() AS avg_10y_cnt, ret_10y.percentile(95) AS perrank_percent_5_10y,
  166. ret_10y.percentile(90) AS perrank_percent_10_10y, ret_10y.percentile(75) AS perrank_percent_25_10y,
  167. ret_10y.percentile(50) AS perrank_percent_50_10y, ret_10y.percentile(25) AS perrank_percent_75_10y,
  168. ret_10y.percentile(10) AS perrank_percent_90_10y, ret_10y.percentile(5) AS perrank_percent_95_10y,
  169. ret_10y.max() AS best_10y, ret_10y.min() AS worst_10y,
  170. ret_ytd.mean() AS avg_ytd, ret_ytd.count() AS avg_ytd_cnt, ret_ytd.percentile(95) AS perrank_percent_5_ytd,
  171. ret_ytd.percentile(90) AS perrank_percent_10_ytd, ret_ytd.percentile(75) AS perrank_percent_25_ytd,
  172. ret_ytd.percentile(50) AS perrank_percent_50_ytd, ret_ytd.percentile(25) AS perrank_percent_75_ytd,
  173. ret_ytd.percentile(10) AS perrank_percent_90_ytd, ret_ytd.percentile(5) AS perrank_percent_95_ytd,
  174. ret_ytd.max() AS best_ytd, ret_ytd.min() AS worst_ytd
  175. FROM t
  176. INNER JOIN tb_substrategy s ON t.substrategy = s.substrategy_id
  177. GROUP BY t.substrategy, t.end_date;
  178. return v_tables;
  179. }
  180. /*
  181. * 自定义百分位计算
  182. *
  183. */
  184. defg perRank(x, is_ASC) {
  185. return (100 * x.rank(ascending=is_ASC, percent=true)).round(0);
  186. }
  187. /*
  188. * 动态生成用于排序的SQL脚本
  189. *
  190. * @param indicator_name <STRING>: 指标字段名
  191. * @param indicator_id <INT>:指标ID
  192. * @param is_ASC <BOOL>: 是否排正序
  193. * @param ranking_by <STRING>: 'strategy', 'substrategy', 'factor_id', 'catavg'
  194. *
  195. * TODO: portfolio, cf, manager, company,
  196. * TODO: bfi & category
  197. *
  198. */
  199. def gen_ranking_sql0(data_table, indicator_table, ranking_by) {
  200. for(indicator in indicator_table) {
  201. // 近1月和近3月排名仅对收益有效,为了满足表结构的要求,需要建立几个”假”字段,并用NULL赋值
  202. t_tmp = table(1000:0, ['indicator_id', 'indicator_1m', 'absrank_1m', 'perrank_1m',
  203. 'indicator_3m', 'absrank_3m', 'perrank_3m'],
  204. [INT, DOUBLE, INT, INT, DOUBLE, INT, INT]);
  205. INSERT INTO t_tmp VALUES (indicator.id, double(NULL), int(NULL), int(NULL), double(NULL), int(NULL), int(NULL));
  206. t_ranking = sql(select = (sqlCol('entity_id'), sqlCol('end_date'), sqlCol(ranking_by), sqlCol('indicator_id'),
  207. sqlCol('indicator_1m'), sqlCol('absrank_1m'), sqlCol('perrank_1m'),
  208. sqlCol('indicator_3m'), sqlCol('absrank_3m'), sqlCol('perrank_3m'),
  209. // 与 MySQL 不同,这里统一把近4年和成立以来的排名去掉
  210. sqlCol(indicator.name + '_6m',,'indicator_6m'),
  211. sqlCol(indicator.name + '_6m', rank{, indicator.is_ASC}, 'absrank_6m'),
  212. sqlCol(indicator.name + '_6m', perRank{, indicator.is_ASC}, 'perrank_6m'),
  213. sqlCol(indicator.name + '_1y',,'indicator_1y'),
  214. sqlCol(indicator.name + '_1y', rank{, indicator.is_ASC}, 'absrank_1y'),
  215. sqlCol(indicator.name + '_1y', perRank{, indicator.is_ASC}, 'perrank_1y'),
  216. sqlCol(indicator.name + '_2y',,'indicator_2y'),
  217. sqlCol(indicator.name + '_2y', rank{, indicator.is_ASC}, 'absrank_2y'),
  218. sqlCol(indicator.name + '_2y', perRank{, indicator.is_ASC}, 'perrank_2y'),
  219. sqlCol(indicator.name + '_3y',,'indicator_3y'),
  220. sqlCol(indicator.name + '_3y', rank{, indicator.is_ASC}, 'absrank_3y'),
  221. sqlCol(indicator.name + '_3y', perRank{, indicator.is_ASC}, 'perrank_3y'),
  222. sqlCol(indicator.name + '_5y',,'indicator_5y'),
  223. sqlCol(indicator.name + '_5y', rank{, indicator.is_ASC}, 'absrank_5y'),
  224. sqlCol(indicator.name + '_5y', perRank{, indicator.is_ASC}, 'perrank_5y'),
  225. sqlCol(indicator.name + '_10y',,'indicator_10y'),
  226. sqlCol(indicator.name + '_10y', rank{, indicator.is_ASC}, 'absrank_10y'),
  227. sqlCol(indicator.name + '_10y', perRank{, indicator.is_ASC}, 'perrank_10y'),
  228. sqlCol(indicator.name + '_ytd',,'indicator_ytd'),
  229. sqlCol(indicator.name + '_ytd', rank{, indicator.is_ASC}, 'absrank_ytd'),
  230. sqlCol(indicator.name + '_ytd', perRank{, indicator.is_ASC}, 'perrank_ytd')
  231. ),
  232. from = cj(data_table, t_tmp),
  233. where = <_$ranking_by IS NOT NULL>,
  234. groupBy = (sqlCol(ranking_by), sqlCol('end_date')),
  235. groupFlag = 0 ).eval(); // context by
  236. // 近1月和近3月排名仅对收益有效,为了满足表结构的要求,需要建立几个”假”字段,并用NULL赋值
  237. t_tmp = table(1000:0, ['indicator_id', 'avg_1m', 'avg_1m_cnt', 'perrank_percent_5_1m', 'perrank_percent_10_1m', 'perrank_percent_25_1m',
  238. 'perrank_percent_50_1m', 'perrank_percent_75_1m', 'perrank_percent_90_1m', 'perrank_percent_95_1m', 'best_1m', 'worst_1m',
  239. 'avg_3m', 'avg_3m_cnt', 'perrank_percent_5_3m', 'perrank_percent_10_3m', 'perrank_percent_25_3m',
  240. 'perrank_percent_50_3m', 'perrank_percent_75_3m', 'perrank_percent_90_3m', 'perrank_percent_95_3m', 'best_3m', 'worst_3m'],
  241. [INT, DOUBLE, INT, DOUBLE, DOUBLE, DOUBLE,
  242. DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE,
  243. DOUBLE, INT, DOUBLE, DOUBLE, DOUBLE,
  244. DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE]);
  245. INSERT INTO t_tmp VALUES (indicator.id, double(NULL), int(NULL), double(NULL), double(NULL), double(NULL),
  246. double(NULL), double(NULL), double(NULL), double(NULL), double(NULL), double(NULL),
  247. double(NULL), int(NULL), double(NULL), double(NULL), double(NULL),
  248. double(NULL), double(NULL), double(NULL), double(NULL), double(NULL), double(NULL));
  249. t_ranking_num = sql(select = (sqlCol('end_date'), sqlCol(ranking_by), sqlCol('raise_type', mean, 'raise_type'), sqlCol('indicator_id', mean,'indicator_id'),
  250. sqlCol('avg_1m', mean, 'avg_1m'), sqlCol('avg_1m_cnt', mean, 'avg_1m_cnt'),
  251. sqlCol('perrank_percent_5_1m', mean, 'perrank_percent_5_1m'),
  252. sqlCol('perrank_percent_10_1m', mean, 'perrank_percent_10_1m'),
  253. sqlCol('perrank_percent_25_1m', mean, 'perrank_percent_25_1m'),
  254. sqlCol('perrank_percent_50_1m', mean, 'perrank_percent_50_1m'),
  255. sqlCol('perrank_percent_75_1m', mean, 'perrank_percent_75_1m'),
  256. sqlCol('perrank_percent_90_1m', mean, 'perrank_percent_90_1m'),
  257. sqlCol('perrank_percent_95_1m', mean, 'perrank_percent_95_1m'),
  258. sqlCol('best_1m', mean, 'best_1m'), sqlCol('worst_1m', mean, 'worst_1m'),
  259. sqlCol('avg_3m', mean, 'avg_3m'), sqlCol('avg_3m_cnt', mean, 'avg_3m_cnt'),
  260. sqlCol('perrank_percent_5_3m', mean, 'perrank_percent_5_3m'),
  261. sqlCol('perrank_percent_10_3m', mean, 'perrank_percent_10_3m'),
  262. sqlCol('perrank_percent_25_3m', mean, 'perrank_percent_25_3m'),
  263. sqlCol('perrank_percent_50_3m', mean, 'perrank_percent_50_3m'),
  264. sqlCol('perrank_percent_75_3m', mean, 'perrank_percent_75_3m'),
  265. sqlCol('perrank_percent_90_3m', mean, 'perrank_percent_90_3m'),
  266. sqlCol('perrank_percent_95_3m', mean, 'perrank_percent_95_3m'),
  267. sqlCol('best_3m', mean, 'best_3m'), sqlCol('worst_3m', mean, 'worst_3m'),
  268. // 与 MySQL 不同,这里统一把近4年和成立以来的排名去掉
  269. sqlCol(indicator.name + '_6m', mean, 'avg_6m'), sqlCol(indicator.name + '_6m', count, 'avg_6m_cnt'),
  270. sqlCol(indicator.name + '_6m', percentile{, iif(indicator.is_ASC, 5, 95)}, 'perrank_percent_5_6m'),
  271. sqlCol(indicator.name + '_6m', percentile{, iif(indicator.is_ASC, 10, 90)}, 'perrank_percent_10_6m'),
  272. sqlCol(indicator.name + '_6m', percentile{, iif(indicator.is_ASC, 25, 75)}, 'perrank_percent_25_6m'),
  273. sqlCol(indicator.name + '_6m', percentile{, iif(indicator.is_ASC, 50, 50)}, 'perrank_percent_50_6m'),
  274. sqlCol(indicator.name + '_6m', percentile{, iif(indicator.is_ASC, 75, 25)}, 'perrank_percent_75_6m'),
  275. sqlCol(indicator.name + '_6m', percentile{, iif(indicator.is_ASC, 90, 10)}, 'perrank_percent_90_6m'),
  276. sqlCol(indicator.name + '_6m', percentile{, iif(indicator.is_ASC, 95, 5)}, 'perrank_percent_95_6m'),
  277. sqlCol(indicator.name + '_6m', iif(indicator.is_ASC, min, max), 'best_6m'),
  278. sqlCol(indicator.name + '_6m', iif(indicator.is_ASC, max, min), 'worst_6m'),
  279. sqlCol(indicator.name + '_1y', mean, 'avg_1y'), sqlCol(indicator.name + '_1y', count, 'avg_1y_cnt'),
  280. sqlCol(indicator.name + '_1y', percentile{, iif(indicator.is_ASC, 5, 95)}, 'perrank_percent_5_1y'),
  281. sqlCol(indicator.name + '_1y', percentile{, iif(indicator.is_ASC, 10, 90)}, 'perrank_percent_10_1y'),
  282. sqlCol(indicator.name + '_1y', percentile{, iif(indicator.is_ASC, 25, 75)}, 'perrank_percent_25_1y'),
  283. sqlCol(indicator.name + '_1y', percentile{, iif(indicator.is_ASC, 50, 50)}, 'perrank_percent_50_1y'),
  284. sqlCol(indicator.name + '_1y', percentile{, iif(indicator.is_ASC, 75, 25)}, 'perrank_percent_75_1y'),
  285. sqlCol(indicator.name + '_1y', percentile{, iif(indicator.is_ASC, 90, 10)}, 'perrank_percent_90_1y'),
  286. sqlCol(indicator.name + '_1y', percentile{, iif(indicator.is_ASC, 95, 5)}, 'perrank_percent_95_1y'),
  287. sqlCol(indicator.name + '_1y', iif(indicator.is_ASC, min, max), 'best_1y'),
  288. sqlCol(indicator.name + '_1y', iif(indicator.is_ASC, max, min), 'worst_1y'),
  289. sqlCol(indicator.name + '_2y', mean, 'avg_2y'), sqlCol(indicator.name + '_2y', count, 'avg_2y_cnt'),
  290. sqlCol(indicator.name + '_2y', percentile{, iif(indicator.is_ASC, 5, 95)}, 'perrank_percent_5_2y'),
  291. sqlCol(indicator.name + '_2y', percentile{, iif(indicator.is_ASC, 10, 90)}, 'perrank_percent_10_2y'),
  292. sqlCol(indicator.name + '_2y', percentile{, iif(indicator.is_ASC, 25, 75)}, 'perrank_percent_25_2y'),
  293. sqlCol(indicator.name + '_2y', percentile{, iif(indicator.is_ASC, 50, 50)}, 'perrank_percent_50_2y'),
  294. sqlCol(indicator.name + '_2y', percentile{, iif(indicator.is_ASC, 75, 25)}, 'perrank_percent_75_2y'),
  295. sqlCol(indicator.name + '_2y', percentile{, iif(indicator.is_ASC, 90, 10)}, 'perrank_percent_90_2y'),
  296. sqlCol(indicator.name + '_2y', percentile{, iif(indicator.is_ASC, 95, 5)}, 'perrank_percent_95_2y'),
  297. sqlCol(indicator.name + '_2y', iif(indicator.is_ASC, min, max), 'best_2y'),
  298. sqlCol(indicator.name + '_2y', iif(indicator.is_ASC, max, min), 'worst_2y'),
  299. sqlCol(indicator.name + '_3y', mean, 'avg_3y'), sqlCol(indicator.name + '_3y', count, 'avg_3y_cnt'),
  300. sqlCol(indicator.name + '_3y', percentile{, iif(indicator.is_ASC, 5, 95)}, 'perrank_percent_5_3y'),
  301. sqlCol(indicator.name + '_3y', percentile{, iif(indicator.is_ASC, 10, 90)}, 'perrank_percent_10_3y'),
  302. sqlCol(indicator.name + '_3y', percentile{, iif(indicator.is_ASC, 25, 75)}, 'perrank_percent_25_3y'),
  303. sqlCol(indicator.name + '_3y', percentile{, iif(indicator.is_ASC, 50, 50)}, 'perrank_percent_50_3y'),
  304. sqlCol(indicator.name + '_3y', percentile{, iif(indicator.is_ASC, 75, 25)}, 'perrank_percent_75_3y'),
  305. sqlCol(indicator.name + '_3y', percentile{, iif(indicator.is_ASC, 90, 10)}, 'perrank_percent_90_3y'),
  306. sqlCol(indicator.name + '_3y', percentile{, iif(indicator.is_ASC, 95, 5)}, 'perrank_percent_95_3y'),
  307. sqlCol(indicator.name + '_3y', iif(indicator.is_ASC, min, max), 'best_3y'),
  308. sqlCol(indicator.name + '_3y', iif(indicator.is_ASC, max, min), 'worst_3y'),
  309. sqlCol(indicator.name + '_5y', mean, 'avg_5y'), sqlCol(indicator.name + '_5y', count, 'avg_5y_cnt'),
  310. sqlCol(indicator.name + '_5y', percentile{, iif(indicator.is_ASC, 5, 95)}, 'perrank_percent_5_5y'),
  311. sqlCol(indicator.name + '_5y', percentile{, iif(indicator.is_ASC, 10, 90)}, 'perrank_percent_10_5y'),
  312. sqlCol(indicator.name + '_5y', percentile{, iif(indicator.is_ASC, 25, 75)}, 'perrank_percent_25_5y'),
  313. sqlCol(indicator.name + '_5y', percentile{, iif(indicator.is_ASC, 50, 50)}, 'perrank_percent_50_5y'),
  314. sqlCol(indicator.name + '_5y', percentile{, iif(indicator.is_ASC, 75, 25)}, 'perrank_percent_75_5y'),
  315. sqlCol(indicator.name + '_5y', percentile{, iif(indicator.is_ASC, 90, 10)}, 'perrank_percent_90_5y'),
  316. sqlCol(indicator.name + '_5y', percentile{, iif(indicator.is_ASC, 95, 5)}, 'perrank_percent_95_5y'),
  317. sqlCol(indicator.name + '_5y', iif(indicator.is_ASC, min, max), 'best_5y'),
  318. sqlCol(indicator.name + '_5y', iif(indicator.is_ASC, max, min), 'worst_5y'),
  319. sqlCol(indicator.name + '_10y', mean, 'avg_10y'), sqlCol(indicator.name + '_10y', count, 'avg_10y_cnt'),
  320. sqlCol(indicator.name + '_10y', percentile{, iif(indicator.is_ASC, 5, 95)}, 'perrank_percent_5_10y'),
  321. sqlCol(indicator.name + '_10y', percentile{, iif(indicator.is_ASC, 10, 90)}, 'perrank_percent_10_10y'),
  322. sqlCol(indicator.name + '_10y', percentile{, iif(indicator.is_ASC, 25, 75)}, 'perrank_percent_25_10y'),
  323. sqlCol(indicator.name + '_10y', percentile{, iif(indicator.is_ASC, 50, 50)}, 'perrank_percent_50_10y'),
  324. sqlCol(indicator.name + '_10y', percentile{, iif(indicator.is_ASC, 75, 25)}, 'perrank_percent_75_10y'),
  325. sqlCol(indicator.name + '_10y', percentile{, iif(indicator.is_ASC, 90, 10)}, 'perrank_percent_90_10y'),
  326. sqlCol(indicator.name + '_10y', percentile{, iif(indicator.is_ASC, 95, 5)}, 'perrank_percent_95_10y'),
  327. sqlCol(indicator.name + '_10y', iif(indicator.is_ASC, min, max), 'best_10y'),
  328. sqlCol(indicator.name + '_10y', iif(indicator.is_ASC, max, min), 'worst_10y'),
  329. sqlCol(indicator.name + '_ytd', mean, 'avg_ytd'), sqlCol(indicator.name + '_ytd', count, 'avg_ytd_cnt'),
  330. sqlCol(indicator.name + '_ytd', percentile{, iif(indicator.is_ASC, 5, 95)}, 'perrank_percent_5_ytd'),
  331. sqlCol(indicator.name + '_ytd', percentile{, iif(indicator.is_ASC, 10, 90)}, 'perrank_percent_10_ytd'),
  332. sqlCol(indicator.name + '_ytd', percentile{, iif(indicator.is_ASC, 25, 75)}, 'perrank_percent_25_ytd'),
  333. sqlCol(indicator.name + '_ytd', percentile{, iif(indicator.is_ASC, 50, 50)}, 'perrank_percent_50_ytd'),
  334. sqlCol(indicator.name + '_ytd', percentile{, iif(indicator.is_ASC, 75, 25)}, 'perrank_percent_75_ytd'),
  335. sqlCol(indicator.name + '_ytd', percentile{, iif(indicator.is_ASC, 90, 10)}, 'perrank_percent_90_ytd'),
  336. sqlCol(indicator.name + '_ytd', percentile{, iif(indicator.is_ASC, 95, 5)}, 'perrank_percent_95_ytd'),
  337. sqlCol(indicator.name + '_ytd', iif(indicator.is_ASC, min, max), 'best_ytd'),
  338. sqlCol(indicator.name + '_ytd', iif(indicator.is_ASC, max, min), 'worst_ytd')
  339. ),
  340. from = cj(data_table, t_tmp),
  341. where = <_$ranking_by IS NOT NULL>,
  342. groupBy = (sqlCol(ranking_by), sqlCol('end_date')),
  343. groupFlag = 1).eval(); // group by
  344. }
  345. return t_ranking, t_ranking_num;
  346. }
  347. /*
  348. * 动态生成用于排序的SQL脚本
  349. *
  350. * @param indicator_name <STRING>: 指标字段名
  351. * @param indicator_id <INT>:指标ID
  352. * @param is_ASC <BOOL>: 是否排正序
  353. * @param ranking_by <STRING>: 'strategy', 'substrategy', 'factor_id', 'catavg'
  354. *
  355. * TODO: portfolio, cf, manager, company,
  356. * TODO: bfi & category
  357. *
  358. */
  359. def gen_ranking_sql(data_table, indicator_table, ranking_by) {
  360. for(indicator in indicator_table) {
  361. // 与 MySQL 不同,这里统一把近4年和成立以来的排名去掉
  362. if(indicator.id == 1)
  363. v_trailing = ['1m', '3m', '6m', '1y', '2y', '3y', '5y', '10y', 'ytd'];
  364. else {
  365. v_trailing = ['6m', '1y', '2y', '3y', '5y', '10y', 'ytd'];
  366. v_missing_trailing = ['1m', '3m'];
  367. }
  368. // 绝对排名和百分位排名
  369. t_ranking = sql(select = (sqlCol(['entity_id', 'end_date', 'category_id']), <indicator.id as indicator_id>,
  370. sqlCol(indicator.name + '_' + v_trailing,, 'indicator_' + v_trailing),
  371. sqlCol(indicator.name + '_' + v_trailing, rank{, indicator.is_ASC}, 'absrank_' + v_trailing),
  372. sqlCol(indicator.name + '_' + v_trailing, perRank{, indicator.is_ASC}, 'perrank_' + v_trailing)
  373. ),
  374. from = data_table,
  375. where = < category_id IS NOT NULL>,
  376. groupBy = sqlCol(['category_id', 'end_date']),
  377. groupFlag = 0 ).eval(); // context by
  378. // 为了满足表结构的要求, 非收益的指标要补上1m和3m的字段,虽然都是NULL
  379. if(indicator.id != 1) {
  380. t_tmp = table(1000:0,
  381. ['indicator_' + v_missing_trailing, 'absrank_' + v_missing_trailing, 'perrank_' + v_missing_trailing].flatten(),
  382. [take(DOUBLE, v_missing_trailing.size()), take(INT, v_missing_trailing.size()), take(INT, v_missing_trailing.size())].flatten()
  383. );
  384. t_ranking = SELECT * FROM cj(t_ranking, t_tmp);
  385. }
  386. // 平均值、集合数量、各分位的阈值
  387. t_ranking_num = sql(select =(sqlCol(['end_date', 'category_id']),
  388. sqlCol('raise_type', mean, 'raise_type'), <indicator.id as indicator_id>,
  389. sqlCol(indicator.name + '_' + v_trailing, mean, 'avg_' + v_trailing),
  390. sqlCol(indicator.name + '_' + v_trailing, count, 'avg_' + v_trailing + '_cnt'),
  391. sqlCol(indicator.name + '_' + v_trailing, percentile{, iif(indicator.is_ASC, 5, 95)}, 'perrank_percent_5_' + v_trailing),
  392. sqlCol(indicator.name + '_' + v_trailing, percentile{, iif(indicator.is_ASC, 10, 90)}, 'perrank_percent_10_' + v_trailing),
  393. sqlCol(indicator.name + '_' + v_trailing, percentile{, iif(indicator.is_ASC, 25, 75)}, 'perrank_percent_25_' + v_trailing),
  394. sqlCol(indicator.name + '_' + v_trailing, percentile{, iif(indicator.is_ASC, 50, 50)}, 'perrank_percent_50_' + v_trailing),
  395. sqlCol(indicator.name + '_' + v_trailing, percentile{, iif(indicator.is_ASC, 75, 25)}, 'perrank_percent_75_' + v_trailing),
  396. sqlCol(indicator.name + '_' + v_trailing, percentile{, iif(indicator.is_ASC, 90, 10)}, 'perrank_percent_90_' + v_trailing),
  397. sqlCol(indicator.name + '_' + v_trailing, percentile{, iif(indicator.is_ASC, 95, 5)}, 'perrank_percent_95_' + v_trailing),
  398. sqlCol(indicator.name + '_' + v_trailing, iif(indicator.is_ASC, min, max), 'best_' + v_trailing),
  399. sqlCol(indicator.name + '_' + v_trailing, iif(indicator.is_ASC, max, min), 'worst_' + v_trailing)
  400. ),
  401. from = data_table,
  402. where = < category_id IS NOT NULL>,
  403. groupBy = sqlCol(['category_id', 'end_date']),
  404. groupFlag = 1).eval(); // group by
  405. // 为了满足表结构的要求, 非收益的指标要补上1m和3m的字段,虽然都是NULL
  406. if(indicator.id != 1) {
  407. t_tmp = table(1000:0,
  408. ['avg_' + v_missing_trailing, 'avg_' + v_missing_trailing + '_cnt', 'perrank_percent_5_' + v_missing_trailing,
  409. 'perrank_percent_10_' + v_missing_trailing, 'perrank_percent_25_' + v_missing_trailing,
  410. 'perrank_percent_50_' + v_missing_trailing, 'perrank_percent_75_' + v_missing_trailing,
  411. 'perrank_percent_90_' + v_missing_trailing, 'perrank_percent_95_' + v_missing_trailing,
  412. 'best_' + v_missing_trailing, 'worst_' + v_missing_trailing ].flatten(),
  413. [take(DOUBLE, v_missing_trailing.size()), take(INT, v_missing_trailing.size()), take(DOUBLE, v_missing_trailing.size()),
  414. take(DOUBLE, v_missing_trailing.size()), take(DOUBLE, v_missing_trailing.size()),
  415. take(DOUBLE, v_missing_trailing.size()), take(DOUBLE, v_missing_trailing.size()),
  416. take(DOUBLE, v_missing_trailing.size()), take(DOUBLE, v_missing_trailing.size()),
  417. take(DOUBLE, v_missing_trailing.size()),take(DOUBLE, v_missing_trailing.size())].flatten()
  418. );
  419. t_ranking = SELECT * FROM cj(t_ranking, t_tmp);
  420. }
  421. }
  422. return t_ranking, t_ranking_num;
  423. }
  424. /*
  425. * 运行排名SQL脚本
  426. *
  427. * NOTE: 没有用 parseExpr 来生成动态脚本的原因是数据表无法传入
  428. */
  429. def run_ranking_sql(data_table, indicator_table, mutable v_tables) {
  430. tb_strategy_ranking = gen_ranking_sql(data_table, indicator_table, 'strategy')[0];
  431. v_tables[0].tableInsert(tb_strategy_ranking);
  432. tb_strategy_ranking_num = gen_ranking_sql(data_table, indicator_table, 'strategy')[1];
  433. v_tables[1].tableInsert(tb_strategy_ranking_num);
  434. tb_substrategy_ranking = gen_ranking_sql(data_table, indicator_table, 'substrategy')[0];
  435. v_tables[2].tableInsert(tb_substrategy_ranking);
  436. tb_substrategy_ranking_num = gen_ranking_sql(data_table, indicator_table, 'substrategy')[1];
  437. v_tables[3].tableInsert(tb_substrategy_ranking_num);
  438. }
  439. /*
  440. * 计算风险指标排名
  441. *
  442. *
  443. */
  444. def cal_risk_ranking(entity_type, entity_info, end_date, isFromMySQL) {
  445. // 当前只对基金做排名, 其它类型参考基金排名做相对排名
  446. if(!(entity_type in ['MF', 'HF'])) return null;
  447. table_desc = get_risk_stats_table_description(entity_type);
  448. tb_data = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
  449. sec_id_col = table_desc.sec_id_col[0];
  450. tb_data.rename!(sec_id_col, 'entity_id');
  451. t = SELECT *
  452. FROM entity_info en
  453. INNER JOIN tb_data d ON en.entity_id = d.entity_id
  454. WHERE en.strategy IS NOT NULL;
  455. // 按照 MySQL 字段建表
  456. t_s = create_entity_indicator_ranking(false);
  457. t_s_num = create_entity_indicator_ranking_num(false);
  458. t_ss = create_entity_indicator_substrategy_ranking(false);
  459. t_ss_num = create_entity_indicator_substrategy_ranking_num(false);
  460. v_ranking_tables = [t_s, t_s_num, t_ss, t_ss_num];
  461. // 50, 52 dolphin 未计算
  462. indicator_table = SELECT * FROM get_indicator_info() WHERE id in [2, 6, 9, 10, 11, 12, 21, 59];
  463. run_ranking_sql(t, indicator_table, v_ranking_tables);
  464. return v_ranking_tables;
  465. }
  466. /*
  467. * 计算风险调整收益指标排名
  468. *
  469. *
  470. */
  471. def cal_risk_adj_return_ranking(entity_type, entity_info, end_date, isFromMySQL) {
  472. // 当前只对基金做排名, 其它类型参考基金排名做相对排名
  473. if(!(entity_type in ['MF', 'HF'])) return null;
  474. table_desc = get_riskadjret_stats_table_description(entity_type);
  475. tb_data = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
  476. sec_id_col = table_desc.sec_id_col[0];
  477. tb_data.rename!(sec_id_col, 'entity_id');
  478. t = SELECT *
  479. FROM entity_info en
  480. INNER JOIN tb_data d ON en.entity_id = d.entity_id
  481. WHERE en.strategy IS NOT NULL;
  482. // 按照 MySQL 字段建表
  483. t_s = create_entity_indicator_ranking(false);
  484. t_s_num = create_entity_indicator_ranking_num(false);
  485. t_ss = create_entity_indicator_substrategy_ranking(false);
  486. t_ss_num = create_entity_indicator_substrategy_ranking_num(false);
  487. v_ranking_tables = [t_s, t_s_num, t_ss, t_ss_num];
  488. // 19 (MAR Sortino ratio) dolphin 未计算
  489. indicator_table = SELECT * FROM get_indicator_info() WHERE id in [14, 15, 16, 17, 18, 40, 58];
  490. run_ranking_sql(t, indicator_table, v_ranking_tables);
  491. return v_ranking_tables;
  492. }
  493. /*
  494. * 计算杂项指标排名
  495. *
  496. *
  497. */
  498. def cal_other_indicator_ranking(entity_type, entity_info, end_date, isFromMySQL) {
  499. // 当前只对基金做排名, 其它类型参考基金排名做相对排名
  500. if(!(entity_type in ['MF', 'HF'])) return null;
  501. table_desc = get_indicator_table_description(entity_type);
  502. tb_data = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
  503. sec_id_col = table_desc.sec_id_col[0];
  504. tb_data.rename!(sec_id_col, 'entity_id');
  505. t = SELECT *
  506. FROM entity_info en
  507. INNER JOIN tb_data d ON en.entity_id = d.entity_id
  508. WHERE en.strategy IS NOT NULL;
  509. // 按照 MySQL 字段建表
  510. t_s = create_entity_indicator_ranking(false);
  511. t_s_num = create_entity_indicator_ranking_num(false);
  512. t_ss = create_entity_indicator_substrategy_ranking(false);
  513. t_ss_num = create_entity_indicator_substrategy_ranking_num(false);
  514. v_ranking_tables = [t_s, t_s_num, t_ss, t_ss_num];
  515. // 37 (per_con), 43, 44, 45, 46, 47 (smdd模型) dolphin 未计算
  516. indicator_table = SELECT * FROM get_indicator_info() WHERE id in [38, 41, 42, 48, 49];
  517. run_ranking_sql(t, indicator_table, v_ranking_tables);
  518. return v_ranking_tables;
  519. }
  520. /*
  521. * 计算上下行指标排名
  522. *
  523. *
  524. */
  525. def cal_capture_style_ranking(entity_type, entity_info, end_date, isFromMySQL) {
  526. // 当前只对基金做排名, 其它类型参考基金排名做相对排名
  527. if(!(entity_type in ['MF', 'HF'])) return null;
  528. table_desc = get_capture_style_table_description(entity_type);
  529. tb_data = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
  530. sec_id_col = table_desc.sec_id_col[0];
  531. tb_data.rename!(sec_id_col, 'entity_id');
  532. t = SELECT *
  533. FROM entity_info en
  534. INNER JOIN tb_data d ON en.entity_id = d.entity_id
  535. WHERE en.strategy IS NOT NULL;
  536. // 按照 MySQL 字段建表
  537. t_s = create_entity_indicator_ranking(false);
  538. t_s_num = create_entity_indicator_ranking_num(false);
  539. t_ss = create_entity_indicator_substrategy_ranking(false);
  540. t_ss_num = create_entity_indicator_substrategy_ranking_num(false);
  541. v_ranking_tables = [t_s, t_s_num, t_ss, t_ss_num];
  542. indicator_table = SELECT * FROM get_indicator_info() WHERE id in [33, 34, 35, 36];
  543. run_ranking_sql(t, indicator_table, v_ranking_tables);
  544. return v_ranking_tables;
  545. }
  546. /*
  547. * 计算BFI指标排名
  548. *
  549. * TODO: return
  550. */
  551. def cal_bfi_indicator_ranking(entity_type, entity_info, end_date, isFromMySQL) {
  552. // 当前只对基金做排名, 其它类型参考基金排名做相对排名
  553. if(!(entity_type in ['MF', 'HF'])) return null;
  554. table_desc = get_bfi_indicator_table_description(entity_type);
  555. sec_id_col = table_desc.sec_id_col[0];
  556. tb_data_bfi_indicator = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
  557. tb_data_bfi_indicator.rename!(sec_id_col, 'entity_id');
  558. table_desc = get_risk_stats_table_description(entity_type);
  559. sec_id_col = table_desc.sec_id_col[0];
  560. tb_data_risk_stats = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
  561. tb_data_risk_stats.rename!(sec_id_col, 'entity_id');
  562. table_desc = get_riskadjret_stats_table_description(entity_type);
  563. sec_id_col = table_desc.sec_id_col[0];
  564. tb_data_riskadjret_stats = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
  565. tb_data_riskadjret_stats.rename!(sec_id_col, 'entity_id');
  566. table_desc = get_indicator_table_description(entity_type);
  567. sec_id_col = table_desc.sec_id_col[0];
  568. tb_data_indicator_stats = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
  569. tb_data_indicator_stats.rename!(sec_id_col, 'entity_id');
  570. t = SELECT *
  571. FROM entity_info en
  572. INNER JOIN tb_data_bfi_indicator d2 ON en.entity_id = d2.entity_id
  573. INNER JOIN tb_data_risk_stats d3 ON en.entity_id = d3.entity_id
  574. INNER JOIN tb_data_riskadjret_stats d4 ON en.entity_id = d4.entity_id
  575. INNER JOIN tb_data_indicator_stats d5 ON en.entity_id = d5.entity_id
  576. WHERE en.strategy IS NOT NULL;
  577. // 按照 MySQL 字段建表
  578. t_s = create_entity_indicator_ranking(false);
  579. t_s_num = create_entity_indicator_ranking_num(false);
  580. t_ss = create_entity_indicator_substrategy_ranking(false);
  581. t_ss_num = create_entity_indicator_substrategy_ranking_num(false);
  582. v_ranking_tables = [t_s, t_s_num, t_ss, t_ss_num];
  583. // 取消 39, 53, 54, 55, 57, 57
  584. v_indicator_id = [11, 12, 16, 33, 34, 35, 36, 38, 48, 59,
  585. 2, 6, 9, 10, 21, 50, 52,
  586. 14, 15, 16, 17, 18, 19, 58, 21, 40,
  587. 37, 41, 42, 43, 44, 45, 46, 47, 49
  588. ];
  589. indicator_table = SELECT * FROM get_indicator_info() WHERE id in v_indicator_id;
  590. run_ranking_sql(t, indicator_table, v_ranking_tables);
  591. return v_ranking_tables;
  592. }
  593. /*
  594. * 将源指标表横表变竖表,以方便排名计算
  595. *
  596. *
  597. */
  598. def transform_data_for_ranking(entity_type, data_table, ranking_by, indicator_info) {
  599. // 只有收益需要1m, 3m
  600. if(indicator_info.size() == 1 && indicator_info[0].id == 1 )
  601. v_trailing = ['1m', '3m', '6m', '1y', '2y', '3y', '5y', '10y', 'ytd'];
  602. else
  603. v_trailing = ['6m', '1y', '2y', '3y', '5y', '10y', 'ytd'];
  604. // 只有 portfolio_id 是整型,其它的都是字符串
  605. is_id_integer = false;
  606. if(entity_type == 'PF') is_id_integer = true;
  607. if(ranking_by == 'strategy')
  608. tb_ranking = create_entity_indicator_ranking(is_id_integer).rename!(ranking_by, 'category_id');
  609. else if(ranking_by == 'substrategy')
  610. tb_ranking = create_entity_indicator_substrategy_ranking(is_id_integer).rename!(ranking_by, 'category_id');
  611. else if(ranking_by == 'factor_id')
  612. tb_ranking = NULL;
  613. for(indicator in indicator_info) {
  614. t = sql(select = (sqlCol(['entity_id', 'end_date', 'category_id']), <indicator.id as indicator_id>,
  615. sqlCol(indicator.name + '_' + v_trailing,, 'indicator_' + v_trailing)
  616. ),
  617. from = data_table
  618. ).eval();
  619. if(indicator_info.size() > 1 || indicator_info[0].id <> 1 )
  620. {
  621. t.join!(table(take(double(NULL), t.size()) AS indicator_1m,
  622. take(double(NULL), t.size()) AS indicator_3m) );
  623. }
  624. t.join!(table( take(int(NULL), t.size()) AS absrank_1m,
  625. take(int(NULL), t.size()) AS perrank_1m,
  626. take(int(NULL), t.size()) AS absrank_3m,
  627. take(int(NULL), t.size()) AS perrank_3m,
  628. take(int(NULL), t.size()) AS absrank_6m,
  629. take(int(NULL), t.size()) AS perrank_6m,
  630. take(int(NULL), t.size()) AS absrank_1y,
  631. take(int(NULL), t.size()) AS perrank_1y,
  632. take(int(NULL), t.size()) AS absrank_2y,
  633. take(int(NULL), t.size()) AS perrank_2y,
  634. take(int(NULL), t.size()) AS absrank_3y,
  635. take(int(NULL), t.size()) AS perrank_3y,
  636. take(int(NULL), t.size()) AS absrank_5y,
  637. take(int(NULL), t.size()) AS perrank_5y,
  638. take(int(NULL), t.size()) AS absrank_10y,
  639. take(int(NULL), t.size()) AS perrank_10y,
  640. take(int(NULL), t.size()) AS absrank_ytd,
  641. take(int(NULL), t.size()) AS perrank_ytd )
  642. );
  643. INSERT INTO tb_ranking
  644. SELECT * FROM (sql(select = sqlCol(tb_ranking.colNames()),
  645. from = t).eval());
  646. }
  647. return tb_ranking;
  648. }
  649. /*
  650. * 将源风险指标表横表变竖表,以方便排名计算
  651. *
  652. *
  653. */
  654. def transform_return_for_ranking (entity_type, entity_info, end_date, ranking_by, isFromMySQL=true) {
  655. table_desc = get_performance_table_description(entity_type);
  656. tb_data = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
  657. sec_id_col = table_desc.sec_id_col[0];
  658. tb_data.rename!(sec_id_col, 'entity_id');
  659. data_table = SELECT * FROM entity_info en
  660. INNER JOIN tb_data d ON en.entity_id = d.entity_id
  661. WHERE en.strategy IS NOT NULL
  662. data_table.dropColumns!('id');
  663. data_table.rename!(ranking_by, 'category_id');
  664. // 目前SQL排名的指标还包含39:年化收益,与收益没有什么差别所以被取消
  665. v_indicator_name = ['ret'];
  666. v_indicator_id = [1];
  667. v_is_ASC = [false];
  668. t_indicator = table(v_indicator_name AS name, v_indicator_id AS id, v_is_ASC AS is_ASC);
  669. tb_ranking = transform_data_for_ranking(entity_type, data_table, ranking_by, t_indicator).rename!('category_id', ranking_by);
  670. return tb_ranking;
  671. }
  672. /*
  673. * 将源风险指标表横表变竖表,以方便排名计算
  674. *
  675. * TODO: 一直缺 portfolio bfi indicator 计算!mysql 里的 pf_fund_bfi_bm_indicator_ranking 是错的...
  676. */
  677. def transform_risk_stats_for_ranking (entity_type, entity_info, end_date, ranking_by, isFromMySQL=true) {
  678. table_desc = get_risk_stats_table_description(entity_type);
  679. tb_data = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
  680. sec_id_col = table_desc.sec_id_col[0];
  681. tb_data.rename!(sec_id_col, 'entity_id');
  682. data_table = SELECT * FROM entity_info en
  683. INNER JOIN tb_data d ON en.entity_id = d.entity_id
  684. WHERE en.strategy IS NOT NULL
  685. data_table.dropColumns!('id');
  686. data_table.rename!(ranking_by, 'category_id');
  687. // 目前SQL排名的指标
  688. v_indicator_name = ['maxdrawdown', 'kurtosis', 'skewness', 'stddev', 'alpha', 'beta', 'downsidedev', 'maxdrawdown_months', 'maxdrawdown_recoverymonths', 'winrate'];
  689. v_indicator_id = [2, 6, 9, 10, 11, 12, 21, 50, 52, 59];
  690. v_is_ASC = [true, true, false, true, false, false, true, true, true, false];
  691. t_indicator = table(v_indicator_name AS name, v_indicator_id AS id, v_is_ASC AS is_ASC);
  692. tb_ranking = transform_data_for_ranking(entity_type, data_table, ranking_by, t_indicator).rename!('category_id', ranking_by);
  693. return tb_ranking;
  694. }
  695. /*
  696. * 将源风险调整指标表横表变竖表,以方便排名计算
  697. *
  698. *
  699. */
  700. def transform_risk_adj_ret_stats_for_ranking (entity_type, entity_info, end_date, ranking_by, isFromMySQL=true) {
  701. table_desc = get_riskadjret_stats_table_description(entity_type);
  702. tb_data = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
  703. sec_id_col = table_desc.sec_id_col[0];
  704. tb_data.rename!(sec_id_col, 'entity_id');
  705. data_table = SELECT * FROM entity_info en
  706. INNER JOIN tb_data d ON en.entity_id = d.entity_id
  707. WHERE en.strategy IS NOT NULL
  708. data_table.dropColumns!('id');
  709. data_table.rename!(ranking_by, 'category_id');
  710. // 目前SQL排名的指标
  711. v_indicator_name = ['kapparatio', 'treynorratio', 'jensen', 'omegaratio', 'sharperatio', 'sortinoratio_MAR', 'calmarratio', 'sortinoratio'];
  712. v_indicator_id = [14, 15, 16, 17, 18, 19, 40, 58];
  713. v_is_ASC = [false, false, false, false, false, false, false, false];
  714. t_indicator = table(v_indicator_name AS name, v_indicator_id AS id, v_is_ASC AS is_ASC);
  715. tb_ranking = transform_data_for_ranking(entity_type, data_table, ranking_by, t_indicator).rename!('category_id', ranking_by);
  716. return tb_ranking;
  717. }
  718. /*
  719. * 将源杂项风险指标表横表变竖表,以方便排名计算
  720. *
  721. *
  722. */
  723. def transform_other_indicator_for_ranking (entity_type, entity_info, end_date, ranking_by, isFromMySQL=true) {
  724. table_desc = get_indicator_table_description(entity_type);
  725. tb_data = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
  726. sec_id_col = table_desc.sec_id_col[0];
  727. tb_data.rename!(sec_id_col, 'entity_id');
  728. data_table = SELECT * FROM entity_info en
  729. INNER JOIN tb_data d ON en.entity_id = d.entity_id
  730. WHERE en.strategy IS NOT NULL
  731. data_table.dropColumns!('id');
  732. data_table.rename!(ranking_by, 'category_id');
  733. // 目前SQL排名的指标
  734. v_indicator_name = ['per_con', 'info_ratio', 'var', 'cvar', 'smddvar', 'smddcvar', 'smdd_lpm1', 'smdd_lpm2', 'smdd_downside_dev', 'tracking_error', 'm2'];
  735. v_indicator_id = [37, 38, 41, 42, 43, 44, 45, 46, 47, 48, 49];
  736. v_is_ASC = [false, false, true, true, true, true, true, true, true, true, false];
  737. t_indicator = table(v_indicator_name AS name, v_indicator_id AS id, v_is_ASC AS is_ASC);
  738. tb_ranking = transform_data_for_ranking(entity_type, data_table, ranking_by, t_indicator).rename!('category_id', ranking_by);
  739. return tb_ranking;
  740. }
  741. /*
  742. * 将源杂项风险指标表横表变竖表,以方便排名计算
  743. *
  744. *
  745. */
  746. def transform_capture_style_for_ranking (entity_type, entity_info, end_date, ranking_by, isFromMySQL=true) {
  747. table_desc = get_capture_style_table_description(entity_type);
  748. tb_data = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
  749. sec_id_col = table_desc.sec_id_col[0];
  750. tb_data.rename!(sec_id_col, 'entity_id');
  751. data_table = SELECT * FROM entity_info en
  752. INNER JOIN tb_data d ON en.entity_id = d.entity_id
  753. WHERE en.strategy IS NOT NULL
  754. data_table.dropColumns!('id');
  755. data_table.rename!(ranking_by, 'category_id');
  756. // 目前SQL排名的指标
  757. v_indicator_name = ['upsidecapture_ret', 'downsidecapture_ret', 'upsidecapture_ratio', 'downsidecapture_ratio'];
  758. v_indicator_id = [33, 34, 35, 36];
  759. v_is_ASC = [false, false, false, true];
  760. t_indicator = table(v_indicator_name AS name, v_indicator_id AS id, v_is_ASC AS is_ASC);
  761. tb_ranking = transform_data_for_ranking(entity_type, data_table, ranking_by, t_indicator).rename!('category_id', ranking_by);
  762. return tb_ranking;
  763. }
  764. /*
  765. *
  766. * 参考某指定类排名,计算相对排名
  767. *
  768. * @param benchmark_ranking <TABLE>: 被参考的排名表,如公募混合基金
  769. * @param entity_ranking <TABLE>: 被计算的指标表,排名被填充在原表中
  770. * @param isFromMySQL <BOOL>
  771. *
  772. *
  773. * Example: cal_relative_ranking(get_fund_indicator_ranking(NULL, 2024.09M, 102, true),
  774. * transform_risk_stats_for_ranking('PF', get_entity_info('PF', NULL), 2024.09M, true),
  775. * true);
  776. */
  777. def cal_relative_ranking(benchmark_ranking, mutable entity_ranking, isFromMySQL=true) {
  778. v_trailing = ['1m', '3m', '6m', '1y', '2y', '3y', '5y', '10y', 'ytd'];
  779. for(tr in v_trailing) {
  780. indicator_val_col = 'indicator_' + tr;
  781. // 乘上100,000 是为了满足 window join 的字段必须是INT或DURATION
  782. tb_tmp = sql(select = (sqlCol(['entity_id', 'end_date', 'category_id', 'indicator_id']),
  783. sqlColAlias(makeCall(round, binaryExpr(sqlCol(indicator_val_col), 1000000, *), 0), indicator_val_col + '_int')),
  784. from = entity_ranking,
  785. where = < _$indicator_val_col is not null >,
  786. orderBy = sqlCol(['end_date', 'category_id', 'indicator_id', indicator_val_col])
  787. ).eval();
  788. tb_tmp2 = sql(select = (sqlCol(['end_date', 'category_id', 'indicator_id']),
  789. sqlColAlias(makeCall(round, binaryExpr(sqlCol(indicator_val_col), 1000000, *), 0), indicator_val_col + '_int'),
  790. sqlCol('absrank_' + tr), sqlCol('perrank_' + tr)
  791. ),
  792. from = benchmark_ranking,
  793. where = < _$indicator_val_col is not null >,
  794. orderBy = sqlCol(['end_date', 'category_id', 'indicator_id', indicator_val_col])
  795. ).eval();
  796. absrank_col = 'absrank_' + tr;
  797. perrank_col = 'perrank_' + tr;
  798. // 用 pwj 来找最接近的排名
  799. tb_tmp_ranking = sql(select = (sqlCol(['entity_id', 'end_date', 'category_id', 'indicator_id']),
  800. sqlCol(indicator_val_col + '_int'),
  801. sqlCol(['absrank_max', 'perrank_max'])),
  802. from = pwj(tb_tmp, tb_tmp2,
  803. window = 0:1,
  804. aggs = [<max(_$absrank_col) as 'absrank_max'>, <max(_$perrank_col) as 'perrank_max'>],
  805. matchingCols = ['end_date', 'category_id', 'indicator_id', indicator_val_col + '_int'])
  806. ).eval();
  807. // 计算的结果填入排名表
  808. sqlUpdate(table = entity_ranking,
  809. updates = [<absrank_max as _$absrank_col>, <perrank_max as _$perrank_col>],
  810. from = <ej(entity_ranking, tb_tmp_ranking, ['entity_id', 'end_date', 'category_id','indicator_id'])>
  811. ).eval();
  812. }
  813. }
  814. /*
  815. * 排名数据入库
  816. *
  817. * @param ranking_tables <VECTOR>: 包含4个数据表的向量,分别是一级策略排名,一级策略排名阈值,二级策略排名,二级策略排名阈值
  818. */
  819. def save_ranking_tables(entity_type, ranking_tables) {
  820. if(ranking_tables.isVoid()) return;
  821. source_table = '';
  822. target_table = '';
  823. if(entity_type IN ['MF', 'HF']) {
  824. entity_id_col = 'fund_id';
  825. source_table = 'raw_db.pf_fund_indicator_ranking';
  826. target_table = 'raw_db.pf_fund_indicator_ranking'
  827. }
  828. ranking_tables[0].rename!('entity_id', entity_id_col);
  829. save_and_sync(ranking_tables[0], source_table, target_table);
  830. save_and_sync(ranking_tables[1], source_table + '_num', target_table + '_num');
  831. source_table = source_table.strReplace('_ranking', '_substrategy_ranking');
  832. target_table = target_table.strReplace('_ranking', '_substrategy_ranking');
  833. ranking_tables[2].rename!('entity_id', entity_id_col);
  834. save_and_sync(ranking_tables[2], source_table, target_table);
  835. save_and_sync(ranking_tables[3], source_table + '_num', target_table + '_num');
  836. }
  837. /*
  838. * 参考排名数据入库AND a.indicator_id NOT IN (50, 52, 59, 46)
  839. *
  840. * @param ranking_tables <TABLE>:
  841. */
  842. def save_relative_ranking_table(entity_type, ranking_table, ranking_by) {
  843. if(ranking_table.isVoid()) return;
  844. source_table = '';
  845. target_table = '';
  846. if(entity_type == 'PF') {
  847. entity_id_col = 'portfolio_id';
  848. if(ranking_by == 'strategy') {
  849. source_table = 'raw_db.pf_portfolio_indicator_ranking';
  850. target_table = 'raw_db.pf_portfolio_indicator_ranking';
  851. } else if(ranking_by == 'substrategy') {
  852. source_table = 'raw_db.pf_portfolio_indicator_substrategy_ranking';
  853. target_table = 'raw_db.pf_portfolio_indicator_substrategy_ranking';
  854. } else if(ranking_by == 'factor_id') {
  855. source_table = 'raw_db.pf_portfolio_bfi_bm_indicator_ranking';
  856. target_table = 'raw_db.pf_portfolio_bfi_bm_indicator_ranking';
  857. }
  858. } else if(entity_type == 'CF') {
  859. entity_id_col = 'fund_id';
  860. source_table = 'raw_db.pf_cus_fund_indicator_ranking';
  861. target_table = 'raw_db.pf_cus_fund_indicator_ranking'
  862. }
  863. save_and_sync(ranking_table, source_table, target_table);
  864. }