12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064 |
- module fundit::rankingCalculator
- use fundit::sqlUtilities
- use fundit::dataPuller
- use fundit::dataSaver
- /*
- * 汇集所有参与排名的指标信息
- *
- */
- def get_indicator_info() {
- ids = [1,
- 2, 6, 9, 10, 11, 12, 21, 50, 52, 59,
- 14, 15, 16, 17, 18, 19, 40, 58,
- 37, 38, 41, 42, 43, 44, 45, 46, 47, 48, 49,
- 33, 34, 35, 36,
- 66, 53, 54, 55, 56, 57
- ];
- names = ['ret',
- 'maxdrawdown', 'kurtosis', 'skewness', 'stddev', 'alpha', 'beta', 'downsidedev', 'maxdrawdown_months', 'maxdrawdown_recoverymonths', 'winrate',
- 'kapparatio', 'treynorratio', 'jensen', 'omegaratio', 'sharperatio', 'sortinoratio_MAR', 'calmarratio', 'sortinoratio',
- 'per_con', 'info_ratio', 'var', 'cvar', 'smddvar', 'smddcvar', 'smdd_lpm1', 'smdd_lpm2', 'smdd_downside_dev', 'tracking_error', 'm2',
- 'upsidecapture_ret', 'downsidecapture_ret', 'upsidecapture_ratio', 'downsidecapture_ratio',
- 'stability', 'jc_stddev', 'gzstyle_stddev', 'gzstrategy_stddev', 'zz_stddev', 'zx_stddev'
- ];
- is_ASCs = [false,
- true, true, false, true, false, false, true, true, true, false,
- false, false, false, false, false, false, false, false,
- false, false, true, true, true, true, true, true, true, true, false,
- false, false, false, true,
- true, true, true, true, true, true
- ];
- return table(names AS name, ids AS id, is_ASCs AS is_ASC);
- }
- /*
- * 计算收益率排名
- *
- * TODO: 整合入 gen_ranking_sql
- */
- def cal_ret_ranking(entity_type, entity_info, end_date, isFromMySQL) {
- // 当前只对基金做排名, 其它类型参考基金排名做相对排名
- if(!(entity_type in ['MF', 'HF'])) return null;
- table_desc = get_performance_table_description(entity_type);
- tb_data = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
- sec_id_col = table_desc.sec_id_col[0];
- tb_data.rename!(sec_id_col, 'entity_id');
- tb_strategy = get_strategy_list();
- tb_substrategy = get_substrategy_list();
- t = SELECT *
- FROM entity_info en
- INNER JOIN tb_data d ON en.entity_id = d.entity_id
- WHERE en.strategy IS NOT NULL
- AND (en.entity_id LIKE 'MF%' OR en.entity_id LIKE 'HF%')
- // 按照 MySQL 字段建表
- t_s = create_entity_indicator_ranking(false);
- t_s_num = create_entity_indicator_ranking_num(false);
- t_ss = create_entity_indicator_substrategy_ranking(false);
- t_ss_num = create_entity_indicator_substrategy_ranking_num(false);
- v_tables = [t_s, t_s_num, t_ss, t_ss_num];
- v_tables[0] = SELECT entity_id, end_date, strategy, 1 AS indicator_id,
- ret_1m AS indicator_1m, ret_1m.rank(false) AS absrank_1m, (ret_1m.rank(false, percent=true)*100).round(0) AS perrank_1m,
- ret_3m AS indicator_3m, ret_3m.rank(false) AS absrank_3m, (ret_3m.rank(false, percent=true)*100).round(0) AS perrank_3m,
- ret_6m AS indicator_6m, ret_6m.rank(false) AS absrank_6m, (ret_6m.rank(false, percent=true)*100).round(0) AS perrank_6m,
- ret_1y AS indicator_1y, ret_1y.rank(false) AS absrank_1y, (ret_1y.rank(false, percent=true)*100).round(0) AS perrank_1y,
- ret_2y AS indicator_2y, ret_2y.rank(false) AS absrank_2y, (ret_2y.rank(false, percent=true)*100).round(0) AS perrank_2y,
- ret_3y AS indicator_3y, ret_3y.rank(false) AS absrank_3y, (ret_3y.rank(false, percent=true)*100).round(0) AS perrank_3y,
- ret_5y AS indicator_5y, ret_5y.rank(false) AS absrank_5y, (ret_5y.rank(false, percent=true)*100).round(0) AS perrank_5y,
- ret_10y AS indicator_10y, ret_10y.rank(false) AS absrank_10y, (ret_10y.rank(false, percent=true)*100).round(0) AS perrank_10y,
- ret_ytd AS indicator_ytd, ret_ytd.rank(false) AS absrank_ytd, (ret_ytd.rank(false, percent=true)*100).round(0) AS perrank_ytd
- FROM t CONTEXT BY strategy, end_date;
- v_tables[1] = SELECT t.end_date, t.strategy, s.raise_type[0], 1 AS indicator_id,
- ret_1m.mean() AS avg_1m, ret_1m.count() AS avg_1m_cnt, ret_1m.percentile(95) AS perrank_percent_5_1m,
- ret_1m.percentile(90) AS perrank_percent_10_1m, ret_1m.percentile(75) AS perrank_percent_25_1m,
- ret_1m.percentile(50) AS perrank_percent_50_1m, ret_1m.percentile(25) AS perrank_percent_75_1m,
- ret_1m.percentile(10) AS perrank_percent_90_1m, ret_1m.percentile(5) AS perrank_percent_95_1m,
- ret_1m.max() AS best_1m, ret_1m.min() AS worst_1m,
- ret_3m.mean() AS avg_3m, ret_3m.count() AS avg_3m_cnt, ret_3m.percentile(95) AS perrank_percent_5_3m,
- ret_3m.percentile(90) AS perrank_percent_10_3m, ret_3m.percentile(75) AS perrank_percent_25_3m,
- ret_3m.percentile(50) AS perrank_percent_50_3m, ret_3m.percentile(25) AS perrank_percent_75_3m,
- ret_3m.percentile(10) AS perrank_percent_90_3m, ret_3m.percentile(5) AS perrank_percent_95_3m,
- ret_3m.max() AS best_3m, ret_3m.min() AS worst_3m,
- ret_6m.mean() AS avg_6m, ret_6m.count() AS avg_6m_cnt, ret_6m.percentile(95) AS perrank_percent_5_6m,
- ret_6m.percentile(90) AS perrank_percent_10_6m, ret_6m.percentile(75) AS perrank_percent_25_6m,
- ret_6m.percentile(50) AS perrank_percent_50_6m, ret_6m.percentile(25) AS perrank_percent_75_6m,
- ret_6m.percentile(10) AS perrank_percent_90_6m, ret_6m.percentile(5) AS perrank_percent_95_6m,
- ret_6m.max() AS best_6m, ret_6m.min() AS worst_6m,
- ret_1y.mean() AS avg_1y, ret_1y.count() AS avg_1y_cnt, ret_1y.percentile(95) AS perrank_percent_5_1y,
- ret_1y.percentile(90) AS perrank_percent_10_1y, ret_1y.percentile(75) AS perrank_percent_25_1y,
- ret_1y.percentile(50) AS perrank_percent_50_1y, ret_1y.percentile(25) AS perrank_percent_75_1y,
- ret_1y.percentile(10) AS perrank_percent_90_1y, ret_1y.percentile(5) AS perrank_percent_95_1y,
- ret_1y.max() AS best_1y, ret_1y.min() AS worst_1y,
- ret_2y.mean() AS avg_2y, ret_2y.count() AS avg_2y_cnt, ret_2y.percentile(95) AS perrank_percent_5_2y,
- ret_2y.percentile(90) AS perrank_percent_10_2y, ret_2y.percentile(75) AS perrank_percent_25_2y,
- ret_2y.percentile(50) AS perrank_percent_50_2y, ret_2y.percentile(25) AS perrank_percent_75_2y,
- ret_2y.percentile(10) AS perrank_percent_90_2y, ret_2y.percentile(5) AS perrank_percent_95_2y,
- ret_2y.max() AS best_2y, ret_2y.min() AS worst_2y,
- ret_3y.mean() AS avg_3y, ret_3y.count() AS avg_3y_cnt, ret_3y.percentile(95) AS perrank_percent_5_3y,
- ret_3y.percentile(90) AS perrank_percent_10_3y, ret_3y.percentile(75) AS perrank_percent_25_3y,
- ret_3y.percentile(50) AS perrank_percent_50_3y, ret_3y.percentile(25) AS perrank_percent_75_3y,
- ret_3y.percentile(10) AS perrank_percent_90_3y, ret_3y.percentile(5) AS perrank_percent_95_3y,
- ret_3y.max() AS best_3y, ret_3y.min() AS worst_3y,
- ret_5y.mean() AS avg_5y, ret_5y.count() AS avg_5y_cnt, ret_5y.percentile(95) AS perrank_percent_5_5y,
- ret_5y.percentile(90) AS perrank_percent_10_5y, ret_5y.percentile(75) AS perrank_percent_25_5y,
- ret_5y.percentile(50) AS perrank_percent_50_5y, ret_5y.percentile(25) AS perrank_percent_75_5y,
- ret_5y.percentile(10) AS perrank_percent_90_5y, ret_5y.percentile(5) AS perrank_percent_95_5y,
- ret_5y.max() AS best_5y, ret_5y.min() AS worst_5y,
- ret_10y.mean() AS avg_10y, ret_10y.count() AS avg_10y_cnt, ret_10y.percentile(95) AS perrank_percent_5_10y,
- ret_10y.percentile(90) AS perrank_percent_10_10y, ret_10y.percentile(75) AS perrank_percent_25_10y,
- ret_10y.percentile(50) AS perrank_percent_50_10y, ret_10y.percentile(25) AS perrank_percent_75_10y,
- ret_10y.percentile(10) AS perrank_percent_90_10y, ret_10y.percentile(5) AS perrank_percent_95_10y,
- ret_10y.max() AS best_10y, ret_10y.min() AS worst_10y,
- ret_ytd.mean() AS avg_ytd, ret_ytd.count() AS avg_ytd_cnt, ret_ytd.percentile(95) AS perrank_percent_5_ytd,
- ret_ytd.percentile(90) AS perrank_percent_10_ytd, ret_ytd.percentile(75) AS perrank_percent_25_ytd,
- ret_ytd.percentile(50) AS perrank_percent_50_ytd, ret_ytd.percentile(25) AS perrank_percent_75_ytd,
- ret_ytd.percentile(10) AS perrank_percent_90_ytd, ret_ytd.percentile(5) AS perrank_percent_95_ytd,
- ret_ytd.max() AS best_ytd, ret_ytd.min() AS worst_ytd
- FROM t
- INNER JOIN tb_strategy s ON t.strategy = s.strategy_id
- GROUP BY t.strategy, t.end_date;
- v_tables[2] = SELECT entity_id, end_date, substrategy, 1 AS indicator_id,
- ret_1m AS indicator_1m, ret_1m.rank(false) AS absrank_1m, (ret_1m.rank(false, percent=true)*100).round(0) AS perrank_1m,
- ret_3m AS indicator_3m, ret_3m.rank(false) AS absrank_3m, (ret_3m.rank(false, percent=true)*100).round(0) AS perrank_3m,
- ret_6m AS indicator_6m, ret_6m.rank(false) AS absrank_6m, (ret_6m.rank(false, percent=true)*100).round(0) AS perrank_6m,
- ret_1y AS indicator_1y, ret_1y.rank(false) AS absrank_1y, (ret_1y.rank(false, percent=true)*100).round(0) AS perrank_1y,
- ret_2y AS indicator_2y, ret_2y.rank(false) AS absrank_2y, (ret_2y.rank(false, percent=true)*100).round(0) AS perrank_2y,
- ret_3y AS indicator_3y, ret_3y.rank(false) AS absrank_3y, (ret_3y.rank(false, percent=true)*100).round(0) AS perrank_3y,
- ret_5y AS indicator_5y, ret_5y.rank(false) AS absrank_5y, (ret_5y.rank(false, percent=true)*100).round(0) AS perrank_5y,
- ret_10y AS indicator_10y, ret_10y.rank(false) AS absrank_10y, (ret_10y.rank(false, percent=true)*100).round(0) AS perrank_10y,
- ret_ytd AS indicator_ytd, ret_ytd.rank(false) AS absrank_ytd, (ret_ytd.rank(false, percent=true)*100).round(0) AS perrank_ytd
- FROM t CONTEXT BY substrategy, end_date;
- v_tables[3] = SELECT t.end_date, t.substrategy, s.raise_type[0], 1 AS indicator_id,
- ret_1m.mean() AS avg_1m, ret_1m.count() AS avg_1m_cnt, ret_1m.percentile(95) AS perrank_percent_5_1m,
- ret_1m.percentile(90) AS perrank_percent_10_1m, ret_1m.percentile(75) AS perrank_percent_25_1m,
- ret_1m.percentile(50) AS perrank_percent_50_1m, ret_1m.percentile(25) AS perrank_percent_75_1m,
- ret_1m.percentile(10) AS perrank_percent_90_1m, ret_1m.percentile(5) AS perrank_percent_95_1m,
- ret_1m.max() AS best_1m, ret_1m.min() AS worst_1m,
- ret_3m.mean() AS avg_3m, ret_3m.count() AS avg_3m_cnt, ret_3m.percentile(95) AS perrank_percent_5_3m,
- ret_3m.percentile(90) AS perrank_percent_10_3m, ret_3m.percentile(75) AS perrank_percent_25_3m,
- ret_3m.percentile(50) AS perrank_percent_50_3m, ret_3m.percentile(25) AS perrank_percent_75_3m,
- ret_3m.percentile(10) AS perrank_percent_90_3m, ret_3m.percentile(5) AS perrank_percent_95_3m,
- ret_3m.max() AS best_3m, ret_3m.min() AS worst_3m,
- ret_6m.mean() AS avg_6m, ret_6m.count() AS avg_6m_cnt, ret_6m.percentile(95) AS perrank_percent_5_6m,
- ret_6m.percentile(90) AS perrank_percent_10_6m, ret_6m.percentile(75) AS perrank_percent_25_6m,
- ret_6m.percentile(50) AS perrank_percent_50_6m, ret_6m.percentile(25) AS perrank_percent_75_6m,
- ret_6m.percentile(10) AS perrank_percent_90_6m, ret_6m.percentile(5) AS perrank_percent_95_6m,
- ret_6m.max() AS best_6m, ret_6m.min() AS worst_6m,
- ret_1y.mean() AS avg_1y, ret_1y.count() AS avg_1y_cnt, ret_1y.percentile(95) AS perrank_percent_5_1y,
- ret_1y.percentile(90) AS perrank_percent_10_1y, ret_1y.percentile(75) AS perrank_percent_25_1y,
- ret_1y.percentile(50) AS perrank_percent_50_1y, ret_1y.percentile(25) AS perrank_percent_75_1y,
- ret_1y.percentile(10) AS perrank_percent_90_1y, ret_1y.percentile(5) AS perrank_percent_95_1y,
- ret_1y.max() AS best_1y, ret_1y.min() AS worst_1y,
- ret_2y.mean() AS avg_2y, ret_2y.count() AS avg_2y_cnt, ret_2y.percentile(95) AS perrank_percent_5_2y,
- ret_2y.percentile(90) AS perrank_percent_10_2y, ret_2y.percentile(75) AS perrank_percent_25_2y,
- ret_2y.percentile(50) AS perrank_percent_50_2y, ret_2y.percentile(25) AS perrank_percent_75_2y,
- ret_2y.percentile(10) AS perrank_percent_90_2y, ret_2y.percentile(5) AS perrank_percent_95_2y,
- ret_2y.max() AS best_2y, ret_2y.min() AS worst_2y,
- ret_3y.mean() AS avg_3y, ret_3y.count() AS avg_3y_cnt, ret_3y.percentile(95) AS perrank_percent_5_3y,
- ret_3y.percentile(90) AS perrank_percent_10_3y, ret_3y.percentile(75) AS perrank_percent_25_3y,
- ret_3y.percentile(50) AS perrank_percent_50_3y, ret_3y.percentile(25) AS perrank_percent_75_3y,
- ret_3y.percentile(10) AS perrank_percent_90_3y, ret_3y.percentile(5) AS perrank_percent_95_3y,
- ret_3y.max() AS best_3y, ret_3y.min() AS worst_3y,
- ret_5y.mean() AS avg_5y, ret_5y.count() AS avg_5y_cnt, ret_5y.percentile(95) AS perrank_percent_5_5y,
- ret_5y.percentile(90) AS perrank_percent_10_5y, ret_5y.percentile(75) AS perrank_percent_25_5y,
- ret_5y.percentile(50) AS perrank_percent_50_5y, ret_5y.percentile(25) AS perrank_percent_75_5y,
- ret_5y.percentile(10) AS perrank_percent_90_5y, ret_5y.percentile(5) AS perrank_percent_95_5y,
- ret_5y.max() AS best_5y, ret_5y.min() AS worst_5y,
- ret_10y.mean() AS avg_10y, ret_10y.count() AS avg_10y_cnt, ret_10y.percentile(95) AS perrank_percent_5_10y,
- ret_10y.percentile(90) AS perrank_percent_10_10y, ret_10y.percentile(75) AS perrank_percent_25_10y,
- ret_10y.percentile(50) AS perrank_percent_50_10y, ret_10y.percentile(25) AS perrank_percent_75_10y,
- ret_10y.percentile(10) AS perrank_percent_90_10y, ret_10y.percentile(5) AS perrank_percent_95_10y,
- ret_10y.max() AS best_10y, ret_10y.min() AS worst_10y,
- ret_ytd.mean() AS avg_ytd, ret_ytd.count() AS avg_ytd_cnt, ret_ytd.percentile(95) AS perrank_percent_5_ytd,
- ret_ytd.percentile(90) AS perrank_percent_10_ytd, ret_ytd.percentile(75) AS perrank_percent_25_ytd,
- ret_ytd.percentile(50) AS perrank_percent_50_ytd, ret_ytd.percentile(25) AS perrank_percent_75_ytd,
- ret_ytd.percentile(10) AS perrank_percent_90_ytd, ret_ytd.percentile(5) AS perrank_percent_95_ytd,
- ret_ytd.max() AS best_ytd, ret_ytd.min() AS worst_ytd
- FROM t
- INNER JOIN tb_substrategy s ON t.substrategy = s.substrategy_id
- GROUP BY t.substrategy, t.end_date;
- return v_tables;
- }
- /*
- * 自定义百分位计算
- *
- */
- defg perRank(x, is_ASC) {
- return (100 * x.rank(ascending=is_ASC, percent=true)).round(0);
-
- }
- /*
- * 动态生成用于排序的SQL脚本
- *
- * @param indicator_name <STRING>: 指标字段名
- * @param indicator_id <INT>:指标ID
- * @param is_ASC <BOOL>: 是否排正序
- * @param ranking_by <STRING>: 'strategy', 'substrategy', 'factor_id', 'catavg'
- *
- * TODO: portfolio, cf, manager, company,
- * TODO: bfi & category
- *
- */
- def gen_ranking_sql0(data_table, indicator_table, ranking_by) {
- for(indicator in indicator_table) {
- // 近1月和近3月排名仅对收益有效,为了满足表结构的要求,需要建立几个”假”字段,并用NULL赋值
- t_tmp = table(1000:0, ['indicator_id', 'indicator_1m', 'absrank_1m', 'perrank_1m',
- 'indicator_3m', 'absrank_3m', 'perrank_3m'],
- [INT, DOUBLE, INT, INT, DOUBLE, INT, INT]);
- INSERT INTO t_tmp VALUES (indicator.id, double(NULL), int(NULL), int(NULL), double(NULL), int(NULL), int(NULL));
-
- t_ranking = sql(select = (sqlCol('entity_id'), sqlCol('end_date'), sqlCol(ranking_by), sqlCol('indicator_id'),
- sqlCol('indicator_1m'), sqlCol('absrank_1m'), sqlCol('perrank_1m'),
- sqlCol('indicator_3m'), sqlCol('absrank_3m'), sqlCol('perrank_3m'),
- // 与 MySQL 不同,这里统一把近4年和成立以来的排名去掉
- sqlCol(indicator.name + '_6m',,'indicator_6m'),
- sqlCol(indicator.name + '_6m', rank{, indicator.is_ASC}, 'absrank_6m'),
- sqlCol(indicator.name + '_6m', perRank{, indicator.is_ASC}, 'perrank_6m'),
- sqlCol(indicator.name + '_1y',,'indicator_1y'),
- sqlCol(indicator.name + '_1y', rank{, indicator.is_ASC}, 'absrank_1y'),
- sqlCol(indicator.name + '_1y', perRank{, indicator.is_ASC}, 'perrank_1y'),
- sqlCol(indicator.name + '_2y',,'indicator_2y'),
- sqlCol(indicator.name + '_2y', rank{, indicator.is_ASC}, 'absrank_2y'),
- sqlCol(indicator.name + '_2y', perRank{, indicator.is_ASC}, 'perrank_2y'),
- sqlCol(indicator.name + '_3y',,'indicator_3y'),
- sqlCol(indicator.name + '_3y', rank{, indicator.is_ASC}, 'absrank_3y'),
- sqlCol(indicator.name + '_3y', perRank{, indicator.is_ASC}, 'perrank_3y'),
- sqlCol(indicator.name + '_5y',,'indicator_5y'),
- sqlCol(indicator.name + '_5y', rank{, indicator.is_ASC}, 'absrank_5y'),
- sqlCol(indicator.name + '_5y', perRank{, indicator.is_ASC}, 'perrank_5y'),
- sqlCol(indicator.name + '_10y',,'indicator_10y'),
- sqlCol(indicator.name + '_10y', rank{, indicator.is_ASC}, 'absrank_10y'),
- sqlCol(indicator.name + '_10y', perRank{, indicator.is_ASC}, 'perrank_10y'),
- sqlCol(indicator.name + '_ytd',,'indicator_ytd'),
- sqlCol(indicator.name + '_ytd', rank{, indicator.is_ASC}, 'absrank_ytd'),
- sqlCol(indicator.name + '_ytd', perRank{, indicator.is_ASC}, 'perrank_ytd')
- ),
- from = cj(data_table, t_tmp),
- where = <_$ranking_by IS NOT NULL>,
- groupBy = (sqlCol(ranking_by), sqlCol('end_date')),
- groupFlag = 0 ).eval(); // context by
-
-
- // 近1月和近3月排名仅对收益有效,为了满足表结构的要求,需要建立几个”假”字段,并用NULL赋值
- t_tmp = table(1000:0, ['indicator_id', 'avg_1m', 'avg_1m_cnt', 'perrank_percent_5_1m', 'perrank_percent_10_1m', 'perrank_percent_25_1m',
- 'perrank_percent_50_1m', 'perrank_percent_75_1m', 'perrank_percent_90_1m', 'perrank_percent_95_1m', 'best_1m', 'worst_1m',
- 'avg_3m', 'avg_3m_cnt', 'perrank_percent_5_3m', 'perrank_percent_10_3m', 'perrank_percent_25_3m',
- 'perrank_percent_50_3m', 'perrank_percent_75_3m', 'perrank_percent_90_3m', 'perrank_percent_95_3m', 'best_3m', 'worst_3m'],
- [INT, DOUBLE, INT, DOUBLE, DOUBLE, DOUBLE,
- DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE,
- DOUBLE, INT, DOUBLE, DOUBLE, DOUBLE,
- DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE]);
-
- INSERT INTO t_tmp VALUES (indicator.id, double(NULL), int(NULL), double(NULL), double(NULL), double(NULL),
- double(NULL), double(NULL), double(NULL), double(NULL), double(NULL), double(NULL),
- double(NULL), int(NULL), double(NULL), double(NULL), double(NULL),
- double(NULL), double(NULL), double(NULL), double(NULL), double(NULL), double(NULL));
-
- t_ranking_num = sql(select = (sqlCol('end_date'), sqlCol(ranking_by), sqlCol('raise_type', mean, 'raise_type'), sqlCol('indicator_id', mean,'indicator_id'),
- sqlCol('avg_1m', mean, 'avg_1m'), sqlCol('avg_1m_cnt', mean, 'avg_1m_cnt'),
- sqlCol('perrank_percent_5_1m', mean, 'perrank_percent_5_1m'),
- sqlCol('perrank_percent_10_1m', mean, 'perrank_percent_10_1m'),
- sqlCol('perrank_percent_25_1m', mean, 'perrank_percent_25_1m'),
- sqlCol('perrank_percent_50_1m', mean, 'perrank_percent_50_1m'),
- sqlCol('perrank_percent_75_1m', mean, 'perrank_percent_75_1m'),
- sqlCol('perrank_percent_90_1m', mean, 'perrank_percent_90_1m'),
- sqlCol('perrank_percent_95_1m', mean, 'perrank_percent_95_1m'),
- sqlCol('best_1m', mean, 'best_1m'), sqlCol('worst_1m', mean, 'worst_1m'),
- sqlCol('avg_3m', mean, 'avg_3m'), sqlCol('avg_3m_cnt', mean, 'avg_3m_cnt'),
- sqlCol('perrank_percent_5_3m', mean, 'perrank_percent_5_3m'),
- sqlCol('perrank_percent_10_3m', mean, 'perrank_percent_10_3m'),
- sqlCol('perrank_percent_25_3m', mean, 'perrank_percent_25_3m'),
- sqlCol('perrank_percent_50_3m', mean, 'perrank_percent_50_3m'),
- sqlCol('perrank_percent_75_3m', mean, 'perrank_percent_75_3m'),
- sqlCol('perrank_percent_90_3m', mean, 'perrank_percent_90_3m'),
- sqlCol('perrank_percent_95_3m', mean, 'perrank_percent_95_3m'),
- sqlCol('best_3m', mean, 'best_3m'), sqlCol('worst_3m', mean, 'worst_3m'),
- // 与 MySQL 不同,这里统一把近4年和成立以来的排名去掉
- sqlCol(indicator.name + '_6m', mean, 'avg_6m'), sqlCol(indicator.name + '_6m', count, 'avg_6m_cnt'),
- sqlCol(indicator.name + '_6m', percentile{, iif(indicator.is_ASC, 5, 95)}, 'perrank_percent_5_6m'),
- sqlCol(indicator.name + '_6m', percentile{, iif(indicator.is_ASC, 10, 90)}, 'perrank_percent_10_6m'),
- sqlCol(indicator.name + '_6m', percentile{, iif(indicator.is_ASC, 25, 75)}, 'perrank_percent_25_6m'),
- sqlCol(indicator.name + '_6m', percentile{, iif(indicator.is_ASC, 50, 50)}, 'perrank_percent_50_6m'),
- sqlCol(indicator.name + '_6m', percentile{, iif(indicator.is_ASC, 75, 25)}, 'perrank_percent_75_6m'),
- sqlCol(indicator.name + '_6m', percentile{, iif(indicator.is_ASC, 90, 10)}, 'perrank_percent_90_6m'),
- sqlCol(indicator.name + '_6m', percentile{, iif(indicator.is_ASC, 95, 5)}, 'perrank_percent_95_6m'),
- sqlCol(indicator.name + '_6m', iif(indicator.is_ASC, min, max), 'best_6m'),
- sqlCol(indicator.name + '_6m', iif(indicator.is_ASC, max, min), 'worst_6m'),
- sqlCol(indicator.name + '_1y', mean, 'avg_1y'), sqlCol(indicator.name + '_1y', count, 'avg_1y_cnt'),
- sqlCol(indicator.name + '_1y', percentile{, iif(indicator.is_ASC, 5, 95)}, 'perrank_percent_5_1y'),
- sqlCol(indicator.name + '_1y', percentile{, iif(indicator.is_ASC, 10, 90)}, 'perrank_percent_10_1y'),
- sqlCol(indicator.name + '_1y', percentile{, iif(indicator.is_ASC, 25, 75)}, 'perrank_percent_25_1y'),
- sqlCol(indicator.name + '_1y', percentile{, iif(indicator.is_ASC, 50, 50)}, 'perrank_percent_50_1y'),
- sqlCol(indicator.name + '_1y', percentile{, iif(indicator.is_ASC, 75, 25)}, 'perrank_percent_75_1y'),
- sqlCol(indicator.name + '_1y', percentile{, iif(indicator.is_ASC, 90, 10)}, 'perrank_percent_90_1y'),
- sqlCol(indicator.name + '_1y', percentile{, iif(indicator.is_ASC, 95, 5)}, 'perrank_percent_95_1y'),
- sqlCol(indicator.name + '_1y', iif(indicator.is_ASC, min, max), 'best_1y'),
- sqlCol(indicator.name + '_1y', iif(indicator.is_ASC, max, min), 'worst_1y'),
- sqlCol(indicator.name + '_2y', mean, 'avg_2y'), sqlCol(indicator.name + '_2y', count, 'avg_2y_cnt'),
- sqlCol(indicator.name + '_2y', percentile{, iif(indicator.is_ASC, 5, 95)}, 'perrank_percent_5_2y'),
- sqlCol(indicator.name + '_2y', percentile{, iif(indicator.is_ASC, 10, 90)}, 'perrank_percent_10_2y'),
- sqlCol(indicator.name + '_2y', percentile{, iif(indicator.is_ASC, 25, 75)}, 'perrank_percent_25_2y'),
- sqlCol(indicator.name + '_2y', percentile{, iif(indicator.is_ASC, 50, 50)}, 'perrank_percent_50_2y'),
- sqlCol(indicator.name + '_2y', percentile{, iif(indicator.is_ASC, 75, 25)}, 'perrank_percent_75_2y'),
- sqlCol(indicator.name + '_2y', percentile{, iif(indicator.is_ASC, 90, 10)}, 'perrank_percent_90_2y'),
- sqlCol(indicator.name + '_2y', percentile{, iif(indicator.is_ASC, 95, 5)}, 'perrank_percent_95_2y'),
- sqlCol(indicator.name + '_2y', iif(indicator.is_ASC, min, max), 'best_2y'),
- sqlCol(indicator.name + '_2y', iif(indicator.is_ASC, max, min), 'worst_2y'),
- sqlCol(indicator.name + '_3y', mean, 'avg_3y'), sqlCol(indicator.name + '_3y', count, 'avg_3y_cnt'),
- sqlCol(indicator.name + '_3y', percentile{, iif(indicator.is_ASC, 5, 95)}, 'perrank_percent_5_3y'),
- sqlCol(indicator.name + '_3y', percentile{, iif(indicator.is_ASC, 10, 90)}, 'perrank_percent_10_3y'),
- sqlCol(indicator.name + '_3y', percentile{, iif(indicator.is_ASC, 25, 75)}, 'perrank_percent_25_3y'),
- sqlCol(indicator.name + '_3y', percentile{, iif(indicator.is_ASC, 50, 50)}, 'perrank_percent_50_3y'),
- sqlCol(indicator.name + '_3y', percentile{, iif(indicator.is_ASC, 75, 25)}, 'perrank_percent_75_3y'),
- sqlCol(indicator.name + '_3y', percentile{, iif(indicator.is_ASC, 90, 10)}, 'perrank_percent_90_3y'),
- sqlCol(indicator.name + '_3y', percentile{, iif(indicator.is_ASC, 95, 5)}, 'perrank_percent_95_3y'),
- sqlCol(indicator.name + '_3y', iif(indicator.is_ASC, min, max), 'best_3y'),
- sqlCol(indicator.name + '_3y', iif(indicator.is_ASC, max, min), 'worst_3y'),
- sqlCol(indicator.name + '_5y', mean, 'avg_5y'), sqlCol(indicator.name + '_5y', count, 'avg_5y_cnt'),
- sqlCol(indicator.name + '_5y', percentile{, iif(indicator.is_ASC, 5, 95)}, 'perrank_percent_5_5y'),
- sqlCol(indicator.name + '_5y', percentile{, iif(indicator.is_ASC, 10, 90)}, 'perrank_percent_10_5y'),
- sqlCol(indicator.name + '_5y', percentile{, iif(indicator.is_ASC, 25, 75)}, 'perrank_percent_25_5y'),
- sqlCol(indicator.name + '_5y', percentile{, iif(indicator.is_ASC, 50, 50)}, 'perrank_percent_50_5y'),
- sqlCol(indicator.name + '_5y', percentile{, iif(indicator.is_ASC, 75, 25)}, 'perrank_percent_75_5y'),
- sqlCol(indicator.name + '_5y', percentile{, iif(indicator.is_ASC, 90, 10)}, 'perrank_percent_90_5y'),
- sqlCol(indicator.name + '_5y', percentile{, iif(indicator.is_ASC, 95, 5)}, 'perrank_percent_95_5y'),
- sqlCol(indicator.name + '_5y', iif(indicator.is_ASC, min, max), 'best_5y'),
- sqlCol(indicator.name + '_5y', iif(indicator.is_ASC, max, min), 'worst_5y'),
- sqlCol(indicator.name + '_10y', mean, 'avg_10y'), sqlCol(indicator.name + '_10y', count, 'avg_10y_cnt'),
- sqlCol(indicator.name + '_10y', percentile{, iif(indicator.is_ASC, 5, 95)}, 'perrank_percent_5_10y'),
- sqlCol(indicator.name + '_10y', percentile{, iif(indicator.is_ASC, 10, 90)}, 'perrank_percent_10_10y'),
- sqlCol(indicator.name + '_10y', percentile{, iif(indicator.is_ASC, 25, 75)}, 'perrank_percent_25_10y'),
- sqlCol(indicator.name + '_10y', percentile{, iif(indicator.is_ASC, 50, 50)}, 'perrank_percent_50_10y'),
- sqlCol(indicator.name + '_10y', percentile{, iif(indicator.is_ASC, 75, 25)}, 'perrank_percent_75_10y'),
- sqlCol(indicator.name + '_10y', percentile{, iif(indicator.is_ASC, 90, 10)}, 'perrank_percent_90_10y'),
- sqlCol(indicator.name + '_10y', percentile{, iif(indicator.is_ASC, 95, 5)}, 'perrank_percent_95_10y'),
- sqlCol(indicator.name + '_10y', iif(indicator.is_ASC, min, max), 'best_10y'),
- sqlCol(indicator.name + '_10y', iif(indicator.is_ASC, max, min), 'worst_10y'),
- sqlCol(indicator.name + '_ytd', mean, 'avg_ytd'), sqlCol(indicator.name + '_ytd', count, 'avg_ytd_cnt'),
- sqlCol(indicator.name + '_ytd', percentile{, iif(indicator.is_ASC, 5, 95)}, 'perrank_percent_5_ytd'),
- sqlCol(indicator.name + '_ytd', percentile{, iif(indicator.is_ASC, 10, 90)}, 'perrank_percent_10_ytd'),
- sqlCol(indicator.name + '_ytd', percentile{, iif(indicator.is_ASC, 25, 75)}, 'perrank_percent_25_ytd'),
- sqlCol(indicator.name + '_ytd', percentile{, iif(indicator.is_ASC, 50, 50)}, 'perrank_percent_50_ytd'),
- sqlCol(indicator.name + '_ytd', percentile{, iif(indicator.is_ASC, 75, 25)}, 'perrank_percent_75_ytd'),
- sqlCol(indicator.name + '_ytd', percentile{, iif(indicator.is_ASC, 90, 10)}, 'perrank_percent_90_ytd'),
- sqlCol(indicator.name + '_ytd', percentile{, iif(indicator.is_ASC, 95, 5)}, 'perrank_percent_95_ytd'),
- sqlCol(indicator.name + '_ytd', iif(indicator.is_ASC, min, max), 'best_ytd'),
- sqlCol(indicator.name + '_ytd', iif(indicator.is_ASC, max, min), 'worst_ytd')
- ),
- from = cj(data_table, t_tmp),
- where = <_$ranking_by IS NOT NULL>,
- groupBy = (sqlCol(ranking_by), sqlCol('end_date')),
- groupFlag = 1).eval(); // group by
- }
- return t_ranking, t_ranking_num;
- }
- /*
- * 动态生成用于排序的SQL脚本
- *
- * @param indicator_name <STRING>: 指标字段名
- * @param indicator_id <INT>:指标ID
- * @param is_ASC <BOOL>: 是否排正序
- * @param ranking_by <STRING>: 'strategy', 'substrategy', 'factor_id', 'catavg'
- *
- * TODO: portfolio, cf, manager, company,
- * TODO: bfi & category
- *
- */
- def gen_ranking_sql(data_table, indicator_table, ranking_by) {
- for(indicator in indicator_table) {
- // 与 MySQL 不同,这里统一把近4年和成立以来的排名去掉
- if(indicator.id == 1)
- v_trailing = ['1m', '3m', '6m', '1y', '2y', '3y', '5y', '10y', 'ytd'];
- else {
- v_trailing = ['6m', '1y', '2y', '3y', '5y', '10y', 'ytd'];
- v_missing_trailing = ['1m', '3m'];
- }
- // 绝对排名和百分位排名
- t_ranking = sql(select = (sqlCol(['entity_id', 'end_date', 'category_id']), <indicator.id as indicator_id>,
- sqlCol(indicator.name + '_' + v_trailing,, 'indicator_' + v_trailing),
- sqlCol(indicator.name + '_' + v_trailing, rank{, indicator.is_ASC}, 'absrank_' + v_trailing),
- sqlCol(indicator.name + '_' + v_trailing, perRank{, indicator.is_ASC}, 'perrank_' + v_trailing)
- ),
- from = data_table,
- where = < category_id IS NOT NULL>,
- groupBy = sqlCol(['category_id', 'end_date']),
- groupFlag = 0 ).eval(); // context by
- // 为了满足表结构的要求, 非收益的指标要补上1m和3m的字段,虽然都是NULL
- if(indicator.id != 1) {
- t_tmp = table(1000:0,
- ['indicator_' + v_missing_trailing, 'absrank_' + v_missing_trailing, 'perrank_' + v_missing_trailing].flatten(),
- [take(DOUBLE, v_missing_trailing.size()), take(INT, v_missing_trailing.size()), take(INT, v_missing_trailing.size())].flatten()
- );
-
- t_ranking = SELECT * FROM cj(t_ranking, t_tmp);
- }
- // 平均值、集合数量、各分位的阈值
- t_ranking_num = sql(select =(sqlCol(['end_date', 'category_id']),
- sqlCol('raise_type', mean, 'raise_type'), <indicator.id as indicator_id>,
- sqlCol(indicator.name + '_' + v_trailing, mean, 'avg_' + v_trailing),
- sqlCol(indicator.name + '_' + v_trailing, count, 'avg_' + v_trailing + '_cnt'),
- sqlCol(indicator.name + '_' + v_trailing, percentile{, iif(indicator.is_ASC, 5, 95)}, 'perrank_percent_5_' + v_trailing),
- sqlCol(indicator.name + '_' + v_trailing, percentile{, iif(indicator.is_ASC, 10, 90)}, 'perrank_percent_10_' + v_trailing),
- sqlCol(indicator.name + '_' + v_trailing, percentile{, iif(indicator.is_ASC, 25, 75)}, 'perrank_percent_25_' + v_trailing),
- sqlCol(indicator.name + '_' + v_trailing, percentile{, iif(indicator.is_ASC, 50, 50)}, 'perrank_percent_50_' + v_trailing),
- sqlCol(indicator.name + '_' + v_trailing, percentile{, iif(indicator.is_ASC, 75, 25)}, 'perrank_percent_75_' + v_trailing),
- sqlCol(indicator.name + '_' + v_trailing, percentile{, iif(indicator.is_ASC, 90, 10)}, 'perrank_percent_90_' + v_trailing),
- sqlCol(indicator.name + '_' + v_trailing, percentile{, iif(indicator.is_ASC, 95, 5)}, 'perrank_percent_95_' + v_trailing),
- sqlCol(indicator.name + '_' + v_trailing, iif(indicator.is_ASC, min, max), 'best_' + v_trailing),
- sqlCol(indicator.name + '_' + v_trailing, iif(indicator.is_ASC, max, min), 'worst_' + v_trailing)
- ),
- from = data_table,
- where = < category_id IS NOT NULL>,
- groupBy = sqlCol(['category_id', 'end_date']),
- groupFlag = 1).eval(); // group by
- // 为了满足表结构的要求, 非收益的指标要补上1m和3m的字段,虽然都是NULL
- if(indicator.id != 1) {
- t_tmp = table(1000:0,
- ['avg_' + v_missing_trailing, 'avg_' + v_missing_trailing + '_cnt', 'perrank_percent_5_' + v_missing_trailing,
- 'perrank_percent_10_' + v_missing_trailing, 'perrank_percent_25_' + v_missing_trailing,
- 'perrank_percent_50_' + v_missing_trailing, 'perrank_percent_75_' + v_missing_trailing,
- 'perrank_percent_90_' + v_missing_trailing, 'perrank_percent_95_' + v_missing_trailing,
- 'best_' + v_missing_trailing, 'worst_' + v_missing_trailing ].flatten(),
- [take(DOUBLE, v_missing_trailing.size()), take(INT, v_missing_trailing.size()), take(DOUBLE, v_missing_trailing.size()),
- take(DOUBLE, v_missing_trailing.size()), take(DOUBLE, v_missing_trailing.size()),
- take(DOUBLE, v_missing_trailing.size()), take(DOUBLE, v_missing_trailing.size()),
- take(DOUBLE, v_missing_trailing.size()), take(DOUBLE, v_missing_trailing.size()),
- take(DOUBLE, v_missing_trailing.size()),take(DOUBLE, v_missing_trailing.size())].flatten()
- );
-
- t_ranking = SELECT * FROM cj(t_ranking, t_tmp);
- }
- }
- return t_ranking, t_ranking_num;
- }
- /*
- * 运行排名SQL脚本
- *
- * NOTE: 没有用 parseExpr 来生成动态脚本的原因是数据表无法传入
- */
- def run_ranking_sql(data_table, indicator_table, mutable v_tables) {
- tb_strategy_ranking = gen_ranking_sql(data_table, indicator_table, 'strategy')[0];
- v_tables[0].tableInsert(tb_strategy_ranking);
- tb_strategy_ranking_num = gen_ranking_sql(data_table, indicator_table, 'strategy')[1];
- v_tables[1].tableInsert(tb_strategy_ranking_num);
- tb_substrategy_ranking = gen_ranking_sql(data_table, indicator_table, 'substrategy')[0];
- v_tables[2].tableInsert(tb_substrategy_ranking);
- tb_substrategy_ranking_num = gen_ranking_sql(data_table, indicator_table, 'substrategy')[1];
- v_tables[3].tableInsert(tb_substrategy_ranking_num);
- }
- /*
- * 计算风险指标排名
- *
- *
- */
- def cal_risk_ranking(entity_type, entity_info, end_date, isFromMySQL) {
- // 当前只对基金做排名, 其它类型参考基金排名做相对排名
- if(!(entity_type in ['MF', 'HF'])) return null;
- table_desc = get_risk_stats_table_description(entity_type);
- tb_data = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
- sec_id_col = table_desc.sec_id_col[0];
- tb_data.rename!(sec_id_col, 'entity_id');
- t = SELECT *
- FROM entity_info en
- INNER JOIN tb_data d ON en.entity_id = d.entity_id
- WHERE en.strategy IS NOT NULL;
-
- // 按照 MySQL 字段建表
- t_s = create_entity_indicator_ranking(false);
- t_s_num = create_entity_indicator_ranking_num(false);
- t_ss = create_entity_indicator_substrategy_ranking(false);
- t_ss_num = create_entity_indicator_substrategy_ranking_num(false);
- v_ranking_tables = [t_s, t_s_num, t_ss, t_ss_num];
- // 50, 52 dolphin 未计算
- indicator_table = SELECT * FROM get_indicator_info() WHERE id in [2, 6, 9, 10, 11, 12, 21, 59];
- run_ranking_sql(t, indicator_table, v_ranking_tables);
- return v_ranking_tables;
- }
- /*
- * 计算风险调整收益指标排名
- *
- *
- */
- def cal_risk_adj_return_ranking(entity_type, entity_info, end_date, isFromMySQL) {
- // 当前只对基金做排名, 其它类型参考基金排名做相对排名
- if(!(entity_type in ['MF', 'HF'])) return null;
- table_desc = get_riskadjret_stats_table_description(entity_type);
- tb_data = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
- sec_id_col = table_desc.sec_id_col[0];
- tb_data.rename!(sec_id_col, 'entity_id');
- t = SELECT *
- FROM entity_info en
- INNER JOIN tb_data d ON en.entity_id = d.entity_id
- WHERE en.strategy IS NOT NULL;
- // 按照 MySQL 字段建表
- t_s = create_entity_indicator_ranking(false);
- t_s_num = create_entity_indicator_ranking_num(false);
- t_ss = create_entity_indicator_substrategy_ranking(false);
- t_ss_num = create_entity_indicator_substrategy_ranking_num(false);
- v_ranking_tables = [t_s, t_s_num, t_ss, t_ss_num];
- // 19 (MAR Sortino ratio) dolphin 未计算
- indicator_table = SELECT * FROM get_indicator_info() WHERE id in [14, 15, 16, 17, 18, 40, 58];
- run_ranking_sql(t, indicator_table, v_ranking_tables);
- return v_ranking_tables;
- }
- /*
- * 计算杂项指标排名
- *
- *
- */
- def cal_other_indicator_ranking(entity_type, entity_info, end_date, isFromMySQL) {
- // 当前只对基金做排名, 其它类型参考基金排名做相对排名
- if(!(entity_type in ['MF', 'HF'])) return null;
- table_desc = get_indicator_table_description(entity_type);
- tb_data = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
- sec_id_col = table_desc.sec_id_col[0];
- tb_data.rename!(sec_id_col, 'entity_id');
- t = SELECT *
- FROM entity_info en
- INNER JOIN tb_data d ON en.entity_id = d.entity_id
- WHERE en.strategy IS NOT NULL;
- // 按照 MySQL 字段建表
- t_s = create_entity_indicator_ranking(false);
- t_s_num = create_entity_indicator_ranking_num(false);
- t_ss = create_entity_indicator_substrategy_ranking(false);
- t_ss_num = create_entity_indicator_substrategy_ranking_num(false);
- v_ranking_tables = [t_s, t_s_num, t_ss, t_ss_num];
- // 37 (per_con), 43, 44, 45, 46, 47 (smdd模型) dolphin 未计算
- indicator_table = SELECT * FROM get_indicator_info() WHERE id in [38, 41, 42, 48, 49];
- run_ranking_sql(t, indicator_table, v_ranking_tables);
- return v_ranking_tables;
- }
- /*
- * 计算上下行指标排名
- *
- *
- */
- def cal_capture_style_ranking(entity_type, entity_info, end_date, isFromMySQL) {
- // 当前只对基金做排名, 其它类型参考基金排名做相对排名
- if(!(entity_type in ['MF', 'HF'])) return null;
- table_desc = get_capture_style_table_description(entity_type);
- tb_data = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
- sec_id_col = table_desc.sec_id_col[0];
- tb_data.rename!(sec_id_col, 'entity_id');
- t = SELECT *
- FROM entity_info en
- INNER JOIN tb_data d ON en.entity_id = d.entity_id
- WHERE en.strategy IS NOT NULL;
- // 按照 MySQL 字段建表
- t_s = create_entity_indicator_ranking(false);
- t_s_num = create_entity_indicator_ranking_num(false);
- t_ss = create_entity_indicator_substrategy_ranking(false);
- t_ss_num = create_entity_indicator_substrategy_ranking_num(false);
- v_ranking_tables = [t_s, t_s_num, t_ss, t_ss_num];
- indicator_table = SELECT * FROM get_indicator_info() WHERE id in [33, 34, 35, 36];
- run_ranking_sql(t, indicator_table, v_ranking_tables);
- return v_ranking_tables;
- }
- /*
- * 计算BFI指标排名
- *
- * TODO: return
- */
- def cal_bfi_indicator_ranking(entity_type, entity_info, end_date, isFromMySQL) {
- // 当前只对基金做排名, 其它类型参考基金排名做相对排名
- if(!(entity_type in ['MF', 'HF'])) return null;
- table_desc = get_bfi_indicator_table_description(entity_type);
- sec_id_col = table_desc.sec_id_col[0];
- tb_data_bfi_indicator = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
- tb_data_bfi_indicator.rename!(sec_id_col, 'entity_id');
- table_desc = get_risk_stats_table_description(entity_type);
- sec_id_col = table_desc.sec_id_col[0];
- tb_data_risk_stats = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
- tb_data_risk_stats.rename!(sec_id_col, 'entity_id');
- table_desc = get_riskadjret_stats_table_description(entity_type);
- sec_id_col = table_desc.sec_id_col[0];
- tb_data_riskadjret_stats = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
- tb_data_riskadjret_stats.rename!(sec_id_col, 'entity_id');
-
- table_desc = get_indicator_table_description(entity_type);
- sec_id_col = table_desc.sec_id_col[0];
- tb_data_indicator_stats = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
- tb_data_indicator_stats.rename!(sec_id_col, 'entity_id');
- t = SELECT *
- FROM entity_info en
- INNER JOIN tb_data_bfi_indicator d2 ON en.entity_id = d2.entity_id
- INNER JOIN tb_data_risk_stats d3 ON en.entity_id = d3.entity_id
- INNER JOIN tb_data_riskadjret_stats d4 ON en.entity_id = d4.entity_id
- INNER JOIN tb_data_indicator_stats d5 ON en.entity_id = d5.entity_id
- WHERE en.strategy IS NOT NULL;
-
- // 按照 MySQL 字段建表
- t_s = create_entity_indicator_ranking(false);
- t_s_num = create_entity_indicator_ranking_num(false);
- t_ss = create_entity_indicator_substrategy_ranking(false);
- t_ss_num = create_entity_indicator_substrategy_ranking_num(false);
- v_ranking_tables = [t_s, t_s_num, t_ss, t_ss_num];
- // 取消 39, 53, 54, 55, 57, 57
- v_indicator_id = [11, 12, 16, 33, 34, 35, 36, 38, 48, 59,
- 2, 6, 9, 10, 21, 50, 52,
- 14, 15, 16, 17, 18, 19, 58, 21, 40,
- 37, 41, 42, 43, 44, 45, 46, 47, 49
- ];
- indicator_table = SELECT * FROM get_indicator_info() WHERE id in v_indicator_id;
- run_ranking_sql(t, indicator_table, v_ranking_tables);
- return v_ranking_tables;
- }
- /*
- * 将源指标表横表变竖表,以方便排名计算
- *
- *
- */
- def transform_data_for_ranking(entity_type, data_table, ranking_by, indicator_info) {
- // 只有收益需要1m, 3m
- if(indicator_info.size() == 1 && indicator_info[0].id == 1 )
- v_trailing = ['1m', '3m', '6m', '1y', '2y', '3y', '5y', '10y', 'ytd'];
- else
- v_trailing = ['6m', '1y', '2y', '3y', '5y', '10y', 'ytd'];
- // 只有 portfolio_id 是整型,其它的都是字符串
- is_id_integer = false;
- if(entity_type == 'PF') is_id_integer = true;
- if(ranking_by == 'strategy')
- tb_ranking = create_entity_indicator_ranking(is_id_integer).rename!(ranking_by, 'category_id');
- else if(ranking_by == 'substrategy')
- tb_ranking = create_entity_indicator_substrategy_ranking(is_id_integer).rename!(ranking_by, 'category_id');
- else if(ranking_by == 'factor_id')
- tb_ranking = NULL;
- for(indicator in indicator_info) {
- t = sql(select = (sqlCol(['entity_id', 'end_date', 'category_id']), <indicator.id as indicator_id>,
- sqlCol(indicator.name + '_' + v_trailing,, 'indicator_' + v_trailing)
- ),
- from = data_table
- ).eval();
- if(indicator_info.size() > 1 || indicator_info[0].id <> 1 )
- {
- t.join!(table(take(double(NULL), t.size()) AS indicator_1m,
- take(double(NULL), t.size()) AS indicator_3m) );
- }
- t.join!(table( take(int(NULL), t.size()) AS absrank_1m,
- take(int(NULL), t.size()) AS perrank_1m,
- take(int(NULL), t.size()) AS absrank_3m,
- take(int(NULL), t.size()) AS perrank_3m,
- take(int(NULL), t.size()) AS absrank_6m,
- take(int(NULL), t.size()) AS perrank_6m,
- take(int(NULL), t.size()) AS absrank_1y,
- take(int(NULL), t.size()) AS perrank_1y,
- take(int(NULL), t.size()) AS absrank_2y,
- take(int(NULL), t.size()) AS perrank_2y,
- take(int(NULL), t.size()) AS absrank_3y,
- take(int(NULL), t.size()) AS perrank_3y,
- take(int(NULL), t.size()) AS absrank_5y,
- take(int(NULL), t.size()) AS perrank_5y,
- take(int(NULL), t.size()) AS absrank_10y,
- take(int(NULL), t.size()) AS perrank_10y,
- take(int(NULL), t.size()) AS absrank_ytd,
- take(int(NULL), t.size()) AS perrank_ytd )
- );
-
- INSERT INTO tb_ranking
- SELECT * FROM (sql(select = sqlCol(tb_ranking.colNames()),
- from = t).eval());
- }
- return tb_ranking;
- }
- /*
- * 将源风险指标表横表变竖表,以方便排名计算
- *
- *
- */
- def transform_return_for_ranking (entity_type, entity_info, end_date, ranking_by, isFromMySQL=true) {
- table_desc = get_performance_table_description(entity_type);
- tb_data = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
- sec_id_col = table_desc.sec_id_col[0];
- tb_data.rename!(sec_id_col, 'entity_id');
- data_table = SELECT * FROM entity_info en
- INNER JOIN tb_data d ON en.entity_id = d.entity_id
- WHERE en.strategy IS NOT NULL
- data_table.dropColumns!('id');
- data_table.rename!(ranking_by, 'category_id');
- // 目前SQL排名的指标还包含39:年化收益,与收益没有什么差别所以被取消
- v_indicator_name = ['ret'];
- v_indicator_id = [1];
- v_is_ASC = [false];
- t_indicator = table(v_indicator_name AS name, v_indicator_id AS id, v_is_ASC AS is_ASC);
- tb_ranking = transform_data_for_ranking(entity_type, data_table, ranking_by, t_indicator).rename!('category_id', ranking_by);
- return tb_ranking;
- }
- /*
- * 将源风险指标表横表变竖表,以方便排名计算
- *
- * TODO: 一直缺 portfolio bfi indicator 计算!mysql 里的 pf_fund_bfi_bm_indicator_ranking 是错的...
- */
- def transform_risk_stats_for_ranking (entity_type, entity_info, end_date, ranking_by, isFromMySQL=true) {
- table_desc = get_risk_stats_table_description(entity_type);
- tb_data = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
- sec_id_col = table_desc.sec_id_col[0];
- tb_data.rename!(sec_id_col, 'entity_id');
- data_table = SELECT * FROM entity_info en
- INNER JOIN tb_data d ON en.entity_id = d.entity_id
- WHERE en.strategy IS NOT NULL
- data_table.dropColumns!('id');
- data_table.rename!(ranking_by, 'category_id');
- // 目前SQL排名的指标
- v_indicator_name = ['maxdrawdown', 'kurtosis', 'skewness', 'stddev', 'alpha', 'beta', 'downsidedev', 'maxdrawdown_months', 'maxdrawdown_recoverymonths', 'winrate'];
- v_indicator_id = [2, 6, 9, 10, 11, 12, 21, 50, 52, 59];
- v_is_ASC = [true, true, false, true, false, false, true, true, true, false];
- t_indicator = table(v_indicator_name AS name, v_indicator_id AS id, v_is_ASC AS is_ASC);
- tb_ranking = transform_data_for_ranking(entity_type, data_table, ranking_by, t_indicator).rename!('category_id', ranking_by);
- return tb_ranking;
- }
- /*
- * 将源风险调整指标表横表变竖表,以方便排名计算
- *
- *
- */
- def transform_risk_adj_ret_stats_for_ranking (entity_type, entity_info, end_date, ranking_by, isFromMySQL=true) {
- table_desc = get_riskadjret_stats_table_description(entity_type);
- tb_data = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
- sec_id_col = table_desc.sec_id_col[0];
- tb_data.rename!(sec_id_col, 'entity_id');
- data_table = SELECT * FROM entity_info en
- INNER JOIN tb_data d ON en.entity_id = d.entity_id
- WHERE en.strategy IS NOT NULL
- data_table.dropColumns!('id');
- data_table.rename!(ranking_by, 'category_id');
- // 目前SQL排名的指标
- v_indicator_name = ['kapparatio', 'treynorratio', 'jensen', 'omegaratio', 'sharperatio', 'sortinoratio_MAR', 'calmarratio', 'sortinoratio'];
- v_indicator_id = [14, 15, 16, 17, 18, 19, 40, 58];
- v_is_ASC = [false, false, false, false, false, false, false, false];
- t_indicator = table(v_indicator_name AS name, v_indicator_id AS id, v_is_ASC AS is_ASC);
- tb_ranking = transform_data_for_ranking(entity_type, data_table, ranking_by, t_indicator).rename!('category_id', ranking_by);
- return tb_ranking;
- }
- /*
- * 将源杂项风险指标表横表变竖表,以方便排名计算
- *
- *
- */
- def transform_other_indicator_for_ranking (entity_type, entity_info, end_date, ranking_by, isFromMySQL=true) {
- table_desc = get_indicator_table_description(entity_type);
- tb_data = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
- sec_id_col = table_desc.sec_id_col[0];
- tb_data.rename!(sec_id_col, 'entity_id');
- data_table = SELECT * FROM entity_info en
- INNER JOIN tb_data d ON en.entity_id = d.entity_id
- WHERE en.strategy IS NOT NULL
- data_table.dropColumns!('id');
- data_table.rename!(ranking_by, 'category_id');
- // 目前SQL排名的指标
- v_indicator_name = ['per_con', 'info_ratio', 'var', 'cvar', 'smddvar', 'smddcvar', 'smdd_lpm1', 'smdd_lpm2', 'smdd_downside_dev', 'tracking_error', 'm2'];
- v_indicator_id = [37, 38, 41, 42, 43, 44, 45, 46, 47, 48, 49];
- v_is_ASC = [false, false, true, true, true, true, true, true, true, true, false];
- t_indicator = table(v_indicator_name AS name, v_indicator_id AS id, v_is_ASC AS is_ASC);
- tb_ranking = transform_data_for_ranking(entity_type, data_table, ranking_by, t_indicator).rename!('category_id', ranking_by);
- return tb_ranking;
- }
- /*
- * 将源杂项风险指标表横表变竖表,以方便排名计算
- *
- *
- */
- def transform_capture_style_for_ranking (entity_type, entity_info, end_date, ranking_by, isFromMySQL=true) {
- table_desc = get_capture_style_table_description(entity_type);
- tb_data = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
- sec_id_col = table_desc.sec_id_col[0];
- tb_data.rename!(sec_id_col, 'entity_id');
- data_table = SELECT * FROM entity_info en
- INNER JOIN tb_data d ON en.entity_id = d.entity_id
- WHERE en.strategy IS NOT NULL
- data_table.dropColumns!('id');
- data_table.rename!(ranking_by, 'category_id');
- // 目前SQL排名的指标
- v_indicator_name = ['upsidecapture_ret', 'downsidecapture_ret', 'upsidecapture_ratio', 'downsidecapture_ratio'];
- v_indicator_id = [33, 34, 35, 36];
- v_is_ASC = [false, false, false, true];
- t_indicator = table(v_indicator_name AS name, v_indicator_id AS id, v_is_ASC AS is_ASC);
- tb_ranking = transform_data_for_ranking(entity_type, data_table, ranking_by, t_indicator).rename!('category_id', ranking_by);
- return tb_ranking;
- }
- /*
- *
- * 参考某指定类排名,计算相对排名
- *
- * @param benchmark_ranking <TABLE>: 被参考的排名表,如公募混合基金
- * @param entity_ranking <TABLE>: 被计算的指标表,排名被填充在原表中
- * @param isFromMySQL <BOOL>
- *
- *
- * Example: cal_relative_ranking(get_fund_indicator_ranking(NULL, 2024.09M, 102, true),
- * transform_risk_stats_for_ranking('PF', get_entity_info('PF', NULL), 2024.09M, true),
- * true);
- */
- def cal_relative_ranking(benchmark_ranking, mutable entity_ranking, isFromMySQL=true) {
- v_trailing = ['1m', '3m', '6m', '1y', '2y', '3y', '5y', '10y', 'ytd'];
- for(tr in v_trailing) {
- indicator_val_col = 'indicator_' + tr;
-
- // 乘上100,000 是为了满足 window join 的字段必须是INT或DURATION
- tb_tmp = sql(select = (sqlCol(['entity_id', 'end_date', 'category_id', 'indicator_id']),
- sqlColAlias(makeCall(round, binaryExpr(sqlCol(indicator_val_col), 1000000, *), 0), indicator_val_col + '_int')),
- from = entity_ranking,
- where = < _$indicator_val_col is not null >,
- orderBy = sqlCol(['end_date', 'category_id', 'indicator_id', indicator_val_col])
- ).eval();
-
- tb_tmp2 = sql(select = (sqlCol(['end_date', 'category_id', 'indicator_id']),
- sqlColAlias(makeCall(round, binaryExpr(sqlCol(indicator_val_col), 1000000, *), 0), indicator_val_col + '_int'),
- sqlCol('absrank_' + tr), sqlCol('perrank_' + tr)
- ),
- from = benchmark_ranking,
- where = < _$indicator_val_col is not null >,
- orderBy = sqlCol(['end_date', 'category_id', 'indicator_id', indicator_val_col])
- ).eval();
- absrank_col = 'absrank_' + tr;
- perrank_col = 'perrank_' + tr;
- // 用 pwj 来找最接近的排名
- tb_tmp_ranking = sql(select = (sqlCol(['entity_id', 'end_date', 'category_id', 'indicator_id']),
- sqlCol(indicator_val_col + '_int'),
- sqlCol(['absrank_max', 'perrank_max'])),
- from = pwj(tb_tmp, tb_tmp2,
- window = 0:1,
- aggs = [<max(_$absrank_col) as 'absrank_max'>, <max(_$perrank_col) as 'perrank_max'>],
- matchingCols = ['end_date', 'category_id', 'indicator_id', indicator_val_col + '_int'])
- ).eval();
- // 计算的结果填入排名表
- sqlUpdate(table = entity_ranking,
- updates = [<absrank_max as _$absrank_col>, <perrank_max as _$perrank_col>],
- from = <ej(entity_ranking, tb_tmp_ranking, ['entity_id', 'end_date', 'category_id','indicator_id'])>
- ).eval();
- }
- }
- /*
- * 排名数据入库
- *
- * @param ranking_tables <VECTOR>: 包含4个数据表的向量,分别是一级策略排名,一级策略排名阈值,二级策略排名,二级策略排名阈值
- */
- def save_ranking_tables(entity_type, ranking_tables) {
- if(ranking_tables.isVoid()) return;
- source_table = '';
- target_table = '';
- if(entity_type IN ['MF', 'HF']) {
- entity_id_col = 'fund_id';
- source_table = 'raw_db.pf_fund_indicator_ranking';
- target_table = 'raw_db.pf_fund_indicator_ranking'
-
- }
- ranking_tables[0].rename!('entity_id', entity_id_col);
- save_and_sync(ranking_tables[0], source_table, target_table);
- save_and_sync(ranking_tables[1], source_table + '_num', target_table + '_num');
-
- source_table = source_table.strReplace('_ranking', '_substrategy_ranking');
- target_table = target_table.strReplace('_ranking', '_substrategy_ranking');
- ranking_tables[2].rename!('entity_id', entity_id_col);
- save_and_sync(ranking_tables[2], source_table, target_table);
- save_and_sync(ranking_tables[3], source_table + '_num', target_table + '_num');
-
- }
- /*
- * 参考排名数据入库AND a.indicator_id NOT IN (50, 52, 59, 46)
- *
- * @param ranking_tables <TABLE>:
- */
- def save_relative_ranking_table(entity_type, ranking_table, ranking_by) {
- if(ranking_table.isVoid()) return;
- source_table = '';
- target_table = '';
- if(entity_type == 'PF') {
- entity_id_col = 'portfolio_id';
- if(ranking_by == 'strategy') {
- source_table = 'raw_db.pf_portfolio_indicator_ranking';
- target_table = 'raw_db.pf_portfolio_indicator_ranking';
- } else if(ranking_by == 'substrategy') {
- source_table = 'raw_db.pf_portfolio_indicator_substrategy_ranking';
- target_table = 'raw_db.pf_portfolio_indicator_substrategy_ranking';
- } else if(ranking_by == 'factor_id') {
- source_table = 'raw_db.pf_portfolio_bfi_bm_indicator_ranking';
- target_table = 'raw_db.pf_portfolio_bfi_bm_indicator_ranking';
- }
-
- } else if(entity_type == 'CF') {
- entity_id_col = 'fund_id';
- source_table = 'raw_db.pf_cus_fund_indicator_ranking';
- target_table = 'raw_db.pf_cus_fund_indicator_ranking'
-
- }
- save_and_sync(ranking_table, source_table, target_table);
-
- }
|