indicatorCalculator.dos 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300
  1. module fundit::indicatorCalculator
  2. use fundit::dataPuller
  3. use fundit::returnCalculator
  4. use fundit::navCalculator
  5. /*
  6. * Annulized multiple
  7. */
  8. def get_annulization_multiple(freq) {
  9. ret = 1;
  10. if (freq == 'd') {
  11. ret = 252; // We have differences here between Java and DolphinDB, Java uses 365.25 days
  12. } else if (freq == 'w') {
  13. ret = 52;
  14. } else if (freq == 'm') {
  15. ret = 12;
  16. } else if (freq == 'q') {
  17. ret = 4;
  18. } else if (freq == 's') {
  19. ret = 2;
  20. } else if (freq == 'a') {
  21. ret = 1;
  22. }
  23. return ret;
  24. }
  25. /*
  26. * 将VaR包裹一层,使之成为系统认可的聚集函数
  27. * @param returns <DOUBLE VECTOR>: 非空收益率
  28. * @param method <STRING>: 'normal', 'logNormal', 'historical', 'monteCarlo'
  29. * @param confidenceLevel <DOUBLE>: 置信水平,取值区间(0, 1)
  30. *
  31. */
  32. defg aggVaR(returns, method, confidenceLevel) {
  33. return returns.VaR(method, confidenceLevel);
  34. }
  35. /*
  36. * 将CVaR包裹一层,使之成为系统认可的聚集函数
  37. * @param returns <DOUBLE VECTOR>: 非空收益率
  38. * @param method <STRING>: 'normal', 'logNormal', 'historical', 'monteCarlo'
  39. * @param confidenceLevel <DOUBLE>: 置信水平,取值区间(0, 1)
  40. *
  41. */
  42. defg aggCVaR(returns, method, confidenceLevel) {
  43. return returns.CVaR(method, confidenceLevel);
  44. }
  45. /*
  46. * 回撤
  47. *
  48. *
  49. */
  50. defg maxDrawdown(navs) {
  51. return max(1 - navs \ cummax(navs));
  52. }
  53. /*
  54. * Trailing Monthly Return, Standard Deviation, Skewness, Kurtosis, Max Drawdown, VaR, CVaR, Calmar Ratio
  55. *
  56. * @param entity_info <TABLE>: xxx_information表,NEED COLUMNS entity_id, inception_date
  57. * @param ret <TABLE>: 收益表,需要有 entity_id, price_dat, end_date, nav
  58. * @param trailing_month <STRING>: trailing X month or ytd, incep
  59. *
  60. * NOTE: standard deviation of Java version is noncompliant-GIPS annulized number
  61. *
  62. * Create: 20240904 Joey
  63. * TODO: SQL is wrong for max drawdowns
  64. * TODO: var, cvar, calmar are off; std dev, skewness, kurtosis are slightly off
  65. * TODO: SQL is missing for portfolio since inception date return
  66. * TODO: Java calculates max drawdown even there is no nav
  67. * TODO: Java ytd worst month could be wrong (i.e. portfolio 166002, 2024-03)
  68. *
  69. */
  70. def cal_basic_performance(entity_info, ret, trailing_month) {
  71. // accumulate 版的 skewness, kurtosis, var, cvar 似乎都不对劲,只好找个笨办法来实现
  72. if(trailing_month == 'incep') {
  73. // 需要至少6个数才计算标准差、峰度、偏度
  74. t0 = SELECT price_date.max() AS price_date, nav, ret,
  75. iif(count(entity_id) > 5, std(ret), null) AS std_dev,
  76. iif(count(entity_id) > 5, skew(ret, false), null) AS skewness,
  77. iif(count(entity_id) > 5, kurtosis(ret, false), null)-3 AS kurtosis,
  78. min(ret) AS wrst_month
  79. FROM ret
  80. WHERE ret > -1
  81. GROUP BY entity_id
  82. CGROUP BY end_date
  83. ORDER BY end_date;
  84. // 年化收益(给后面计算Calmar用)
  85. t0.addColumn(['trailing_ret', 'trailing_ret_a'], [DOUBLE, DOUBLE]);
  86. // MySQL 有bug导致首月ret_1m为空,所以用 prod(1+ret)-1算的有时不对
  87. UPDATE t0
  88. SET trailing_ret = nav\ini_value - 1,
  89. trailing_ret_a = iif(t0.end_date - ei.inception_date.month() > 12, (nav\ini_value).pow(12\(t0.end_date - ei.inception_date.month())) - 1, nav\ini_value - 1)
  90. FROM ej(t0, entity_info ei, 'entity_id');
  91. // 不会用上面的办法算最大回撤, VaR, CVaR
  92. t_var = SELECT entity_id, end_date, ret,
  93. cummax(1 - nav \ cummax(nav)) AS drawdown,
  94. - cumpercentile(ret, 5, 'linear') AS var
  95. FROM ret WHERE ret > -1
  96. CONTEXT BY entity_id;
  97. t_cvar = SELECT entity_id, end_date, drawdown, var,
  98. - cumavg(iif(ret <= -var, ret, null)) AS cvar
  99. FROM t_var
  100. CONTEXT BY entity_id;
  101. t1 = SELECT t0.*, t_cvar.drawdown, t_cvar.var, t_cvar.cvar
  102. FROM t0 LEFT JOIN t_cvar ON t0.entity_id = t_cvar.entity_id AND t0.end_date = t_cvar.end_date
  103. ORDER BY t0.entity_id, t0.end_date;
  104. } else if(trailing_month == 'ytd') {
  105. t1 = SELECT entity_id, end_date, price_date.cummax() AS price_date, nav, ret,
  106. cumprod(1+ret)-1 AS trailing_ret,
  107. cumprod(1+ret)-1 AS trailing_ret_a, // no need annulization for ytd
  108. iif(cumcount(entity_id) > 5, cumstd(ret), null) AS std_dev,
  109. iif(cumcount(entity_id) > 5, tmoving(skew{, false}, end_date, ret, 12), null) AS skewness,
  110. iif(cumcount(entity_id) > 5, tmoving(kurtosis{, false}, end_date, ret, 12)-3, null) AS kurtosis,
  111. cummin(ret) AS wrst_month,
  112. cummax(1 - nav \ cummax(nav)) AS drawdown
  113. FROM ret WHERE ret > -1
  114. CONTEXT BY entity_id, end_date.year()
  115. ORDER BY entity_id, end_date;
  116. // trailing x month
  117. } else {
  118. // 先转成STRING,避免单字符被认为是CHAR而导致转整型出错的结果
  119. win = trailing_month$STRING$INT;
  120. t1 = SELECT entity_id, end_date, price_date.mmax(win) AS price_date, nav, ret,
  121. mprod(1+ret, win)-1 AS trailing_ret,
  122. iif(win > 12,
  123. mprod(1+ret, win).pow(12\win)-1,
  124. mprod(1+ret, win)-1) AS trailing_ret_a,
  125. mstd(ret, win) AS std_dev,
  126. mskew(ret, win, false) AS skewness,
  127. mkurtosis(ret, win, false) - 3 AS kurtosis,
  128. mmin(ret, win) AS wrst_month,
  129. moving(maxDrawdown, nav, win) AS drawdown,
  130. moving(aggVaR{, 'historical', 0.95}, ret, win) AS var,
  131. moving(aggCVaR{, 'historical', 0.95}, ret, win) AS cvar
  132. FROM ret WHERE ret > -1
  133. CONTEXT BY entity_id
  134. ORDER BY entity_id, end_date;
  135. }
  136. t1.addColumn('calmar', DOUBLE);
  137. UPDATE t1 SET calmar = iif(drawdown == 0, null, trailing_ret_a\drawdown);
  138. return t1;
  139. }
  140. /*
  141. * Lower Partial Moment
  142. * NOTE: risk free rate is used as Minimal Accepted Rate (MAR) here
  143. *
  144. */
  145. def cal_LPM(ret, risk_free, trailing_month) {
  146. t = SELECT *, cumcount(entity_id) AS cnt FROM ret WHERE ret > -1 CONTEXT BY entity_id;
  147. if(trailing_month == 'incep') {
  148. lpm = SELECT entity_id, end_date,
  149. iif(cumcount(end_date) > 5, (cumsum (iif(rfr.ret > t.ret, rfr.ret - t.ret, 0)) \ cumcount(end_date)).pow(1\1), null) AS lpm1,
  150. iif(cumcount(end_date) > 5, (cumsum2 (iif(rfr.ret > t.ret, rfr.ret - t.ret, 0)) \ cumcount(end_date)).pow(1\2), null) AS lpm2,
  151. iif(cumcount(end_date) > 5, (cumsum3 (iif(rfr.ret > t.ret, rfr.ret - t.ret, 0)) \ cumcount(end_date)).pow(1\3), null) AS lpm3
  152. FROM t
  153. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  154. CONTEXT BY entity_id
  155. ORDER BY entity_id, end_date;
  156. } else if(trailing_month == 'ytd') {
  157. lpm = SELECT entity_id, end_date,
  158. iif(cumcount(end_date) > 5, (cumsum (iif(rfr.ret > t.ret, rfr.ret - t.ret, 0)) \ cumcount(end_date)).pow(1\1), null) AS lpm1,
  159. iif(cumcount(end_date) > 5, (cumsum2 (iif(rfr.ret > t.ret, rfr.ret - t.ret, 0)) \ cumcount(end_date)).pow(1\2), null) AS lpm2,
  160. iif(cumcount(end_date) > 5, (cumsum3 (iif(rfr.ret > t.ret, rfr.ret - t.ret, 0)) \ cumcount(end_date)).pow(1\3), null) AS lpm3
  161. FROM t
  162. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  163. CONTEXT BY entity_id, end_date.year()
  164. ORDER BY entity_id, end_date;
  165. } else {
  166. win = trailing_month$STRING$INT;
  167. lpm = SELECT t.entity_id, t.end_date,
  168. (msum (iif(rfr.ret > t.ret, rfr.ret - t.ret, 0), win) \ mcount(end_date, win)).pow(1\1) AS lpm1,
  169. (msum2(iif(rfr.ret > t.ret, rfr.ret - t.ret, 0), win) \ mcount(end_date, win)).pow(1\2) AS lpm2,
  170. (moving(sum3, iif(rfr.ret > t.ret, rfr.ret - t.ret, 0), win) \ mcount(end_date, win)).pow(1\3) AS lpm3
  171. FROM t
  172. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  173. CONTEXT BY t.entity_id
  174. ORDER BY entity_id, end_date;
  175. }
  176. return lpm;
  177. }
  178. /*
  179. * Downside Devision, Omega Ratio, Sortino Ratio, Kappa Ratio
  180. *
  181. * TODO: Java version of Downside Deviation (LPM2) uses cnt-1 as denominator to calculate mean excess return, which might be wrong
  182. * Java version of Omega could be wrong because Java uses annualized returns and cnt-1
  183. * Java'version of Kappa could be very wrong
  184. *
  185. */
  186. def cal_omega_sortino_kappa(ret, risk_free, trailing_month) {
  187. lpm = cal_LPM(ret, risk_free, trailing_month);
  188. // 去掉一些 lpm 值太小的无意义数据
  189. UPDATE lpm SET lpm1 = NULL WHERE lpm1.round(4) == 0;
  190. UPDATE lpm SET lpm2 = NULL WHERE lpm2.round(4) == 0;
  191. UPDATE lpm SET lpm3 = NULL WHERE lpm3.round(4) == 0;
  192. if(trailing_month == 'incep') {
  193. tb = SELECT t.entity_id, t.end_date,
  194. l.lpm2 AS ds_dev,
  195. (t.ret - rfr.ret ).cumavg() \ l.lpm1 + 1 AS omega,
  196. (t.ret - rfr.ret ).cumavg() \ l.lpm2 AS sortino,
  197. (t.ret - rfr.ret ).cumavg() \ l.lpm3 AS kappa
  198. FROM ret t
  199. INNER JOIN lpm l ON t.entity_id = l.entity_id AND t.end_date = l.end_date
  200. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  201. WHERE t.ret > -1
  202. CONTEXT BY t.entity_id;
  203. } else if(trailing_month == 'ytd') {
  204. tb = SELECT t.entity_id, t.end_date,
  205. l.lpm2 AS ds_dev,
  206. (t.ret - rfr.ret ).cumavg() \ l.lpm1 + 1 AS omega,
  207. (t.ret - rfr.ret ).cumavg() \ l.lpm2 AS sortino,
  208. (t.ret - rfr.ret ).cumavg() \ l.lpm3 AS kappa
  209. FROM ret t
  210. INNER JOIN lpm l ON t.entity_id = l.entity_id AND t.end_date = l.end_date
  211. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  212. WHERE t.ret > -1
  213. CONTEXT BY t.entity_id, t.end_date.year();
  214. } else {
  215. win = trailing_month$STRING$INT;
  216. tb = SELECT t.entity_id, t.end_date,
  217. l.lpm2 AS ds_dev,
  218. (t.ret - rfr.ret ).mavg(win) \ l.lpm1 + 1 AS omega,
  219. (t.ret - rfr.ret ).mavg(win) \ l.lpm2 AS sortino,
  220. (t.ret - rfr.ret ).mavg(win) \ l.lpm3 AS kappa
  221. FROM ret t
  222. INNER JOIN lpm l ON t.entity_id = l.entity_id AND t.end_date = l.end_date
  223. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  224. WHERE t.ret > -1
  225. CONTEXT BY t.entity_id;
  226. }
  227. return tb;
  228. }
  229. /*
  230. * Winning Ratio, Tracking Error, Information Ratio
  231. *
  232. * NOTE: mcount is very unique in mFun, because it doesn't support minPeriods(BUG?), while others default minPeriods = window.
  233. * As a result, we have to delete records having winrate but no tracking error and info ratio for the sake of consisence
  234. *
  235. * TODO: Win Rate incept is off, because Java incorrectly takes all end_date as denominator even when benchmark has no price
  236. * Information Ratio is way off!
  237. * Not sure how to describe a giant number("inf"), for now 999 is used
  238. */
  239. def cal_benchmark_tracking(ret, benchmarks, bmk_ret, trailing_month) {
  240. if(trailing_month == 'incep') {
  241. t0 = SELECT t.entity_id, t.end_date, t.price_date,
  242. t.ret, bmk.ret AS ret_bmk,
  243. t.entity_id.cumcount() AS cnt,
  244. t.ret - bmk.ret AS exc_ret, bm.benchmark_id
  245. FROM ret t
  246. INNER JOIN benchmarks bm ON t.entity_id = bm.entity_id AND t.end_date = bm.end_date
  247. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND bm.benchmark_id = bmk.benchmark_id
  248. WHERE t.ret > -1
  249. AND bmk.ret > -1
  250. CONTEXT BY t.entity_id, bm.benchmark_id;
  251. t = SELECT entity_id, end_date, benchmark_id,
  252. iif(cnt > 5, cumcount(iif(exc_ret >= 0, 1, null)) \ cnt, null) AS winrate,
  253. iif(cnt > 5, exc_ret.cumstd(), null) AS track_error,
  254. iif(cnt > 5, iif(exc_ret.cumstd() == 0, null, exc_ret.cumavg() \ exc_ret.cumstd()), 5) AS info
  255. FROM t0
  256. CONTEXT BY entity_id, benchmark_id
  257. ORDER BY entity_id, end_date, benchmark_id;
  258. } else if(trailing_month == 'ytd') {
  259. t0 = SELECT t.entity_id, t.end_date, t.price_date,
  260. t.ret, bmk.ret AS ret_bmk,
  261. t.entity_id.cumcount() AS cnt, t.ret - bmk.ret AS exc_ret, bm.benchmark_id
  262. FROM ret t
  263. INNER JOIN benchmarks bm ON t.entity_id = bm.entity_id AND t.end_date = bm.end_date
  264. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND bm.benchmark_id = bmk.benchmark_id
  265. WHERE t.ret > -1
  266. AND bmk.ret > -1
  267. CONTEXT BY t.entity_id, bm.benchmark_id, t.end_date.year();
  268. t = SELECT entity_id, end_date, benchmark_id,
  269. iif(cnt > 5, cumcount(iif(exc_ret >= 0, 1, null)) \ cnt, null) AS winrate,
  270. iif(cnt > 5, exc_ret.cumstd(), null) AS track_error,
  271. iif(cnt > 5, iif(exc_ret.cumstd() == 0, null, exc_ret.cumavg() \ exc_ret.cumstd()), null) AS info
  272. FROM t0
  273. CONTEXT BY entity_id, benchmark_id, end_date.year()
  274. ORDER BY entity_id, end_date, benchmark_id;
  275. } else {
  276. win = trailing_month$STRING$INT;
  277. t0 = SELECT t.entity_id, t.end_date, t.price_date,
  278. t.ret, bmk.ret AS ret_bmk,
  279. t.entity_id.mcount(win) AS cnt,
  280. t.ret - bmk.ret AS exc_ret, bm.benchmark_id
  281. FROM ret t
  282. INNER JOIN benchmarks bm ON t.entity_id = bm.entity_id AND t.end_date = bm.end_date
  283. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND bm.benchmark_id = bmk.benchmark_id
  284. WHERE t.ret > -1
  285. AND bmk.ret > -1
  286. CONTEXT BY t.entity_id, bm.benchmark_id;
  287. t = SELECT entity_id, end_date, benchmark_id,
  288. iif(cnt > 5, mcount(iif(exc_ret >= 0, 1, null), win) \ cnt, null) AS winrate,
  289. iif(cnt > 5, mstd(exc_ret, win), null) AS track_error,
  290. iif(cnt > 5, iif(mstd(exc_ret, win) == 0, null, mavg(exc_ret, win) \ mstd(exc_ret, win)), null) AS info
  291. FROM t0
  292. CONTEXT BY entity_id, benchmark_id
  293. ORDER BY entity_id, end_date, benchmark_id;
  294. }
  295. return t; //SELECT * FROM t WHERE track_error IS NOT NULL;
  296. }
  297. /*
  298. * Alpha & Beta
  299. * NOTE: alpha of Java version is wrong because it doesn't use risk free rate
  300. */
  301. def cal_alpha_beta(ret, benchmarks, bmk_ret, risk_free, trailing_month) {
  302. t = SELECT t.entity_id, t.end_date, t.ret, bm.benchmark_id, bmk.ret AS ret_bmk
  303. FROM ret t
  304. INNER JOIN benchmarks bm ON t.entity_id = bm.entity_id AND t.end_date = bm.end_date
  305. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND bm.benchmark_id = bmk.benchmark_id
  306. WHERE t.ret > -1
  307. AND bmk.ret > -1;
  308. if(trailing_month == 'incep') {
  309. beta = SELECT entity_id, end_date, benchmark_id,
  310. iif(cumcount(end_date) > 5, ret.cumbeta(ret_bmk), null) AS beta
  311. FROM t CONTEXT BY entity_id, benchmark_id;
  312. alpha = SELECT t.entity_id, t.end_date, t.benchmark_id, beta.beta AS beta,
  313. (t.ret - rfr.ret).cumavg() - beta.beta * (t.ret_bmk - rfr.ret).cumavg() AS alpha
  314. FROM t
  315. INNER JOIN beta beta ON t.entity_id = beta.entity_id AND t.benchmark_id = beta.benchmark_id AND t.end_date = beta.end_date
  316. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  317. CONTEXT BY t.entity_id, t.benchmark_id
  318. ORDER BY t.entity_id, t.end_date, t.benchmark_id;
  319. } else if(trailing_month == 'ytd') {
  320. beta = SELECT entity_id, end_date, benchmark_id,
  321. iif(cumcount(end_date) > 5, ret.cumbeta(ret_bmk), null) AS beta
  322. FROM t CONTEXT BY entity_id, benchmark_id, end_date.year();
  323. alpha = SELECT t.entity_id, t.end_date, t.benchmark_id, beta.beta AS beta,
  324. (t.ret - rfr.ret).cumavg() - beta.beta * (t.ret_bmk - rfr.ret).cumavg() AS alpha
  325. FROM t
  326. INNER JOIN beta beta ON t.entity_id = beta.entity_id AND t.benchmark_id = beta.benchmark_id AND t.end_date = beta.end_date
  327. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  328. CONTEXT BY t.entity_id, t.benchmark_id, t.end_date.year()
  329. ORDER BY t.entity_id, t.end_date, t.benchmark_id;
  330. } else {
  331. win = trailing_month$STRING$INT;
  332. beta = SELECT entity_id, end_date, benchmark_id,
  333. iif(mcount(end_date, win) > 5, ret.mbeta(ret_bmk, win), null) AS beta
  334. FROM t CONTEXT BY entity_id, benchmark_id;
  335. alpha = SELECT t.entity_id, t.end_date, t.benchmark_id, beta.beta AS beta,
  336. (t.ret - rfr.ret).mavg(win) - beta.beta * (t.ret_bmk - rfr.ret).mavg(win) AS alpha
  337. FROM t
  338. INNER JOIN beta beta ON t.entity_id = beta.entity_id AND t.benchmark_id = beta.benchmark_id AND t.end_date = beta.end_date
  339. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  340. CONTEXT BY t.entity_id, t.benchmark_id
  341. ORDER BY t.entity_id, t.end_date, t.benchmark_id;
  342. }
  343. return alpha;
  344. }
  345. /*
  346. * Upside/Down Capture Return/Ratio
  347. *
  348. * TODO: trailing x month values are way off!
  349. *
  350. */
  351. def cal_capture_ratio(ret, benchmarks, bmk_ret, trailing_month) {
  352. if(trailing_month == 'incep') {
  353. t1 = SELECT t.entity_id, t.end_date,
  354. (1 + iif(bmk.ret >= 0, t.ret, 0)).cumprod() AS upside_ret,
  355. (1 + iif(bmk.ret >= 0, bmk.ret, 0)).cumprod() AS bmk_upside_ret,
  356. cumcount(iif(bmk.ret >= 0, 1, null)) AS bmk_upside_cnt,
  357. (1 + iif(bmk.ret < 0, t.ret, 0)).cumprod() AS downside_ret,
  358. (1 + iif(bmk.ret < 0, bmk.ret, 0)).cumprod() AS bmk_downside_ret,
  359. cumcount(iif(bmk.ret < 0, 1, null)) AS bmk_downside_cnt,
  360. bm.benchmark_id
  361. FROM ret t
  362. INNER JOIN benchmarks bm ON t.entity_id = bm.entity_id AND t.end_date = bm.end_date
  363. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND bm.benchmark_id = bmk.benchmark_id AND t.end_date = bmk.end_date
  364. WHERE t.ret > -1
  365. AND bmk.ret > -1
  366. CONTEXT BY t.entity_id, bm.benchmark_id;
  367. } else if(trailing_month == 'ytd') {
  368. t1 = SELECT t.entity_id, t.end_date,
  369. (1 + iif(bmk.ret >= 0, t.ret, 0)).cumprod() AS upside_ret,
  370. (1 + iif(bmk.ret >= 0, bmk.ret, 0)).cumprod() AS bmk_upside_ret,
  371. cumcount(iif(bmk.ret >= 0, 1, null)) AS bmk_upside_cnt,
  372. (1 + iif(bmk.ret < 0, t.ret, 0)).cumprod() AS downside_ret,
  373. (1 + iif(bmk.ret < 0, bmk.ret, 0)).cumprod() AS bmk_downside_ret,
  374. cumcount(iif(bmk.ret < 0, 1, null)) AS bmk_downside_cnt,
  375. bm.benchmark_id
  376. FROM ret t
  377. INNER JOIN benchmarks bm ON t.entity_id = bm.entity_id AND t.end_date = bm.end_date
  378. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND bm.benchmark_id = bmk.benchmark_id AND t.end_date = bmk.end_date
  379. WHERE t.ret > -1
  380. AND bmk.ret > -1
  381. CONTEXT BY t.entity_id, bm.benchmark_id, t.end_date.year();
  382. } else {
  383. win = trailing_month$STRING$INT;
  384. t1 = SELECT t.entity_id, t.end_date,
  385. (1 + iif(bmk.ret >= 0, t.ret, 0)).mprod(win) AS upside_ret,
  386. (1 + iif(bmk.ret >= 0, bmk.ret, 0)).mprod(win) AS bmk_upside_ret,
  387. mcount(iif(bmk.ret >= 0, 1, null), win) AS bmk_upside_cnt,
  388. (1 + iif(bmk.ret < 0, t.ret, 0)).mprod(win) AS downside_ret,
  389. (1 + iif(bmk.ret < 0, bmk.ret, 0)).mprod(win) AS bmk_downside_ret,
  390. mcount(iif(bmk.ret < 0, 1, null), win) AS bmk_downside_cnt,
  391. bm.benchmark_id
  392. FROM ret t
  393. INNER JOIN benchmarks bm ON t.entity_id = bm.entity_id AND t.end_date = bm.end_date
  394. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND bm.benchmark_id = bmk.benchmark_id AND t.end_date = bmk.end_date
  395. WHERE t.ret > -1
  396. AND bmk.ret > -1
  397. CONTEXT BY t.entity_id, bm.benchmark_id;
  398. }
  399. t = SELECT entity_id, end_date, benchmark_id,
  400. t1.upside_ret.pow(1 \ t1.bmk_upside_cnt)-1 AS upside_capture_ret,
  401. (t1.upside_ret.pow(1 \ t1.bmk_upside_cnt)-1)/(t1.bmk_upside_ret.pow(1 \ t1.bmk_upside_cnt)-1) AS upside_capture_ratio,
  402. t1.downside_ret.pow(1 \ t1.bmk_downside_cnt)-1 AS downside_capture_ret,
  403. (t1.downside_ret.pow(1 \ t1.bmk_downside_cnt)-1)/(t1.bmk_downside_ret.pow(1 \ t1.bmk_downside_cnt)-1) AS downside_capture_ratio
  404. FROM t1
  405. ORDER BY entity_id, benchmark_id, end_date;
  406. return t;
  407. }
  408. /*
  409. * Sharpe Ratio
  410. * NOTE: Java version is noncompliant-GIPS annulized number
  411. */
  412. def cal_sharpe(ret, std_dev, risk_free, trailing_month) {
  413. if(trailing_month == 'incep') {
  414. sharpe = SELECT t.entity_id, t.end_date, (t.ret - rfr.ret).cumavg() / std.std_dev AS sharpe
  415. FROM ret t
  416. INNER JOIN std_dev std ON t.entity_id = std.entity_id AND t.end_date = std.end_date
  417. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  418. WHERE std.std_dev <> 0 AND t.ret > -1
  419. CONTEXT BY t.entity_id;
  420. } else if(trailing_month == 'ytd') {
  421. sharpe = SELECT t.entity_id, t.end_date, (t.ret - rfr.ret).cumavg() / std.std_dev AS sharpe
  422. FROM ret t
  423. INNER JOIN std_dev std ON t.entity_id = std.entity_id AND t.end_date = std.end_date
  424. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  425. WHERE std.std_dev <> 0 AND t.ret > -1
  426. CONTEXT BY t.entity_id, t.end_date.year();
  427. } else {
  428. win = trailing_month$STRING$INT;
  429. sharpe = SELECT t.entity_id, t.end_date, (t.ret - rfr.ret).mavg(win) / std.std_dev AS sharpe
  430. FROM ret t
  431. INNER JOIN std_dev std ON t.entity_id = std.entity_id AND t.end_date = std.end_date
  432. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  433. WHERE std.std_dev <> 0 AND t.ret > -1
  434. CONTEXT BY t.entity_id;
  435. }
  436. return sharpe;
  437. }
  438. /*
  439. * Treynor Ratio = annulized excess return / beta
  440. *
  441. * TODO: ytd is off because Java uses non-GIPS rule to annulize return
  442. */
  443. def cal_treynor(ret, risk_free, beta, trailing_month) {
  444. if(trailing_month == 'incep') {
  445. t = SELECT *, cumcount(entity_id) AS cnt
  446. FROM ret t
  447. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  448. WHERE t.ret > -1
  449. AND rfr.ret > -1
  450. CONTEXT BY t.entity_id;
  451. treynor = SELECT t.entity_id, t.end_date, beta.benchmark_id,
  452. ((1 + t.ret).cumprod().pow(12\iif(t.cnt<12, 12, t.cnt)) - (1 + t.rfr_ret).cumprod().pow(12\iif(t.cnt<12, 12, t.cnt))) / beta.beta AS treynor
  453. FROM t
  454. INNER JOIN beta AS beta ON t.entity_id = beta.entity_id AND t.end_date = beta.end_date
  455. CONTEXT BY t.entity_id, beta.benchmark_id;
  456. } else if(trailing_month == 'ytd') {
  457. t = SELECT *, cumcount(entity_id) AS cnt
  458. FROM ret t
  459. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  460. WHERE t.ret > -1
  461. AND rfr.ret > -1
  462. CONTEXT BY t.entity_id, t.end_date.year();
  463. treynor = SELECT t.entity_id, t.end_date, beta.benchmark_id,
  464. ((1 + t.ret).cumprod().pow(12\iif(t.cnt<12, 12, t.cnt)) - (1 + t.rfr_ret).cumprod().pow(12\iif(t.cnt<12, 12, t.cnt))) / beta.beta AS treynor
  465. FROM t
  466. INNER JOIN beta AS beta ON t.entity_id = beta.entity_id AND t.end_date = beta.end_date
  467. CONTEXT BY t.entity_id, beta.benchmark_id, t.end_date.year();
  468. } else {
  469. win = trailing_month$STRING$INT;
  470. t = SELECT *, mcount(entity_id, win) AS cnt
  471. FROM ret t
  472. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  473. WHERE t.ret > -1
  474. AND rfr.ret > -1
  475. CONTEXT BY t.entity_id;
  476. treynor = SELECT t.entity_id, t.end_date, beta.benchmark_id,
  477. ((1 + t.ret).mprod(win).pow(12\iif(t.cnt<12, 12, t.cnt)) - (1 + t.rfr_ret).mprod(win).pow(12\iif(t.cnt<12, 12, t.cnt))) / beta.beta AS treynor
  478. FROM t
  479. INNER JOIN beta AS beta ON t.entity_id = beta.entity_id AND t.end_date = beta.end_date
  480. CONTEXT BY t.entity_id, beta.benchmark_id;
  481. }
  482. return treynor;
  483. }
  484. /*
  485. * Jensen's Alpha
  486. * TODO: the result is slightly off
  487. */
  488. def cal_jensen(ret, bmk_ret, risk_free, beta, trailing_month) {
  489. if(trailing_month == 'incep') {
  490. jensen = SELECT t.entity_id, t.end_date, t.ret.cumavg() - rfr.ret.cumavg() - beta.beta * (bmk.ret.cumavg() - rfr.ret.cumavg()) AS jensen, beta.benchmark_id
  491. FROM ret t
  492. INNER JOIN beta beta ON t.entity_id = beta.entity_id AND t.end_date = beta.end_date
  493. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND beta.benchmark_id = bmk.benchmark_id
  494. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  495. WHERE t.ret > -1
  496. CONTEXT BY t.entity_id, beta.benchmark_id;
  497. } else if(trailing_month == 'ytd') {
  498. jensen = SELECT t.entity_id, t.end_date, t.ret.cumavg() - rfr.ret.cumavg() - beta.beta * (bmk.ret.cumavg() - rfr.ret.cumavg()) AS jensen, beta.benchmark_id
  499. FROM ret t
  500. INNER JOIN beta beta ON t.entity_id = beta.entity_id AND t.end_date = beta.end_date
  501. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND beta.benchmark_id = bmk.benchmark_id
  502. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  503. WHERE t.ret > -1
  504. CONTEXT BY t.entity_id, beta.benchmark_id, t.end_date.year();
  505. } else {
  506. win = trailing_month$STRING$INT;
  507. jensen = SELECT t.entity_id, t.end_date, t.ret.mavg(win) - rfr.ret.mavg(win) - beta.beta * (bmk.ret.mavg(win) - rfr.ret.mavg(win)) AS jensen, beta.benchmark_id
  508. FROM ret t
  509. INNER JOIN beta beta ON t.entity_id = beta.entity_id AND t.end_date = beta.end_date
  510. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND beta.benchmark_id = bmk.benchmark_id
  511. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  512. WHERE t.ret > -1
  513. CONTEXT BY t.entity_id, beta.benchmark_id;
  514. }
  515. return jensen;
  516. }
  517. /*
  518. * Modigliani Modigliani Measure (M2)
  519. * NOTE: M2 = sharpe * std(benchmark) + risk_free_rate
  520. * NOTE: Java version is noncompliant-GIPS annulized number
  521. */
  522. def cal_m2(ret, benchmarks, bmk_ret, risk_free, trailing_month) {
  523. if(trailing_month == 'incep') {
  524. m2 = SELECT t.entity_id, t.end_date,
  525. iif(t.entity_id.cumcount() > 5, (t.ret - rfr.ret).cumavg() / t.ret.cumstd() * bmk.ret.cumstd() + rfr.ret.cumavg(), null) AS m2, bm.benchmark_id
  526. FROM ret t
  527. INNER JOIN benchmarks bm ON t.entity_id = bm.entity_id AND t.end_date = bm.end_date
  528. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND bm.benchmark_id = bmk.benchmark_id
  529. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  530. WHERE t.ret > -1
  531. CONTEXT BY t.entity_id, bm.benchmark_id;
  532. } else if(trailing_month == 'ytd') {
  533. m2 = SELECT t.entity_id, t.end_date,
  534. iif(t.entity_id.cumcount() > 5, (t.ret - rfr.ret).cumavg() / t.ret.cumstd() * bmk.ret.cumstd() + rfr.ret.cumavg(), null) AS m2, bm.benchmark_id
  535. FROM ret t
  536. INNER JOIN benchmarks bm ON t.entity_id = bm.entity_id AND t.end_date = bm.end_date
  537. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND bm.benchmark_id = bmk.benchmark_id
  538. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  539. WHERE t.ret > -1
  540. CONTEXT BY t.entity_id, bm.benchmark_id, t.end_date.year();
  541. } else {
  542. win = trailing_month$STRING$INT;
  543. m2 = SELECT t.entity_id, t.end_date,
  544. iif(t.entity_id.mcount(win) > 5, (t.ret - rfr.ret).mavg(win) / t.ret.mstd(win) * bmk.ret.mstd(win) + rfr.ret.mavg(win), null) AS m2, bm.benchmark_id
  545. FROM ret t
  546. INNER JOIN benchmarks bm ON t.entity_id = bm.entity_id AND t.end_date = bm.end_date
  547. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND bm.benchmark_id = bmk.benchmark_id
  548. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  549. WHERE t.ret > -1
  550. CONTEXT BY t.entity_id, bm.benchmark_id;
  551. }
  552. return m2;
  553. }
  554. /*
  555. * Morningstar Return, Morningstar Risk-Adjusted Return
  556. *
  557. * TODO: Tax and loads are NOT taken care of
  558. * TODO: Assume Chinese methodology using 3, 5, 10 as number of traling years
  559. * TODO: need verify with reliable results
  560. *
  561. * NOTE: Morningstar methodology requires monthly return for calculation, so that "12" is hard-coded here
  562. *
  563. *
  564. */
  565. def cal_ms_return(ret, risk_free, trailing_month) {
  566. win = trailing_month$STRING$INT;
  567. r = SELECT t.entity_id, t.end_date,
  568. ((1 + t.ret)\(1 + rfr.ret)).mprod(win).pow(12\(t.end_date.mmax(win) - t.end_date.mmin(win)))-1 AS ms_ret_a,
  569. (1 + t.ret).pow(-2).mavg(win).pow(-12/2)-1 AS ms_rar_a
  570. FROM ret t
  571. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  572. WHERE t.ret > -1
  573. CONTEXT BY t.entity_id;
  574. return r;
  575. }
  576. /*
  577. * 有效主体-基准对应表
  578. *
  579. * @param benchmarks <TABLE>: entity-benchmark 的对应关系表 NEED COLUMNS: entity_id, end_date, benchmark_id
  580. * @param end_day <DATE>:
  581. * @param trailing_month <STRING>:
  582. * @param isEffectiveOnly <BOOL>: false时与Java相同; true:多了个限制条件:如果区间内有效基准数少于1/2,不做计算
  583. * 比如过去12个月中某BFI只出现2次,小于需要的6次,此BFI不参与 trailing 1 year 计算
  584. *
  585. */
  586. def get_effective_benchmarks(benchmarks, end_day, trailing_month, isEffectiveOnly) {
  587. min_pct = 0.5;
  588. if(isEffectiveOnly) {
  589. t_dates = SELECT DISTINCT entity_id, end_date FROM benchmarks WHERE end_date <= end_day.month();
  590. if(trailing_month == 'incep') {
  591. t = SELECT entity_id, end_date, end_date.cumcount() AS cnt FROM t_dates CONTEXT BY entity_id;
  592. bmk = SELECT bmk.* FROM benchmarks bmk
  593. INNER JOIN t ON bmk.entity_id = t.entity_id AND bmk.end_date = t.end_date
  594. CONTEXT BY bmk.entity_id, bmk.benchmark_id
  595. HAVING bmk.end_date.cumcount() >= t.cnt * min_pct;
  596. } else if(trailing_month == 'ytd') {
  597. t = SELECT entity_id, end_date, end_date.cumcount() AS cnt FROM t_dates CONTEXT BY entity_id, end_date.year();
  598. bmk = SELECT bmk.* FROM benchmarks bmk
  599. INNER JOIN t ON bmk.entity_id = t.entity_id AND bmk.end_date = t.end_date
  600. CONTEXT BY entity_id, benchmark_id, end_date.year()
  601. HAVING bmk.end_date.cumcount() >= t.cnt * min_pct;
  602. } else {
  603. win = trailing_month$STRING$INT;
  604. t = SELECT entity_id, end_date, end_date.mcount(win) AS cnt FROM t_dates CONTEXT BY entity_id;
  605. bmk = SELECT bmk.* FROM benchmarks bmk
  606. INNER JOIN t ON bmk.entity_id = t.entity_id AND bmk.end_date = t.end_date
  607. CONTEXT BY entity_id, benchmark_id
  608. HAVING bmk.end_date.mcount(win) >= t.cnt * min_pct;
  609. }
  610. } else {
  611. bmk = SELECT * FROM benchmarks WHERE end_date <= end_day.month();
  612. }
  613. return bmk;
  614. }
  615. /*
  616. * Calculation for monthly indicators which need benchmark
  617. *
  618. * @param entity_info <TABLE>: xxx_information表,NEED COLUMNS entity_id, inception_date
  619. * @param benchmark_mapping <TABLE>: entity-benchmark mapping table, NEED COLUMNS entity_id, end_date, benchmark_id
  620. * @param end_day <DATE>;
  621. * @param tb_ret <TABLE>: 收益表,NEED COLUMNS entity_id, price_dat, end_date, nav
  622. * @param index_ret <TABLE>: historical benchmark return table, NEED COLUMNS fund_id, end_date, ret
  623. * @param risk_free <TABLE>: historical risk free rate table, NEED COLUMNS fund_id, end_date, ret
  624. * @param month <INT>: trailing x month
  625. *
  626. * @return: indicators table
  627. *
  628. *
  629. * Create 20240904 模仿Java & python代码在Dolphin中实现,具体计算逻辑可能会有不同 Joey
  630. * TODO: some datapoints require more data, we need a way to disable calculation for them
  631. *
  632. */
  633. def cal_indicators_with_benchmark(entity_info, benchmark_mapping, end_day, tb_ret, index_ret, risk_free, month) {
  634. if(entity_info.isVoid() || entity_info.size() == 0 || benchmark_mapping.isVoid() || benchmark_mapping.size() == 0 ) return null;
  635. if(tb_ret.isVoid() || tb_ret.size() == 0 || index_ret.isVoid() || index_ret.size() == 0 || risk_free.isVoid() || risk_free.size() == 0 ) return null;
  636. // sorting for correct first() and last() value
  637. ret = SELECT * FROM tb_ret WHERE ret > -1 AND end_date <= end_day.month() ORDER BY entity_id, price_date;
  638. // get the effective benchmarks
  639. benchmarks = get_effective_benchmarks(benchmark_mapping, end_day, month, true);
  640. if(ret.isVoid() || ret.size() == 0 || benchmarks.isVoid() || benchmarks.size() == 0) return null;
  641. // alpha, beta
  642. alpha_beta = cal_alpha_beta(ret, benchmarks, index_ret, risk_free, month);
  643. // 胜率、跟踪误差、信息比率
  644. bmk_tracking = cal_benchmark_tracking(ret, benchmarks, index_ret, month);
  645. // 特雷诺
  646. treynor = cal_treynor(ret, risk_free, alpha_beta, month);
  647. // 詹森指数
  648. jensen = cal_jensen(ret, index_ret, risk_free, alpha_beta, month);
  649. // M2
  650. m2 = cal_m2(ret, benchmarks, index_ret, risk_free, month);
  651. // 上下行捕获率、收益
  652. capture_r = cal_capture_ratio(ret, benchmarks, index_ret, month);
  653. r = SELECT * FROM bmk_tracking a1
  654. LEFT JOIN alpha_beta ON a1.entity_id = alpha_beta.entity_id AND a1.benchmark_id = alpha_beta.benchmark_id AND a1.end_date = alpha_beta.end_date
  655. LEFT JOIN treynor ON a1.entity_id = treynor.entity_id AND a1.benchmark_id = treynor.benchmark_id AND a1.end_date = treynor.end_date
  656. LEFT JOIN jensen ON a1.entity_id = jensen.entity_id AND a1.benchmark_id = jensen.benchmark_id AND a1.end_date = jensen.end_date
  657. LEFT JOIN m2 ON a1.entity_id = m2.entity_id AND a1.benchmark_id = m2.benchmark_id AND a1.end_date = m2.end_date
  658. LEFT JOIN capture_r ON a1.entity_id = capture_r.entity_id AND a1.benchmark_id = capture_r.benchmark_id AND a1.end_date = capture_r.end_date;
  659. // 年化各数据点
  660. // GIPS RULE: NO annulization for data less than 1 year
  661. plainAnnu = get_annulization_multiple('m');
  662. sqrtAnnu = sqrt(get_annulization_multiple('m'));
  663. r.addColumn(['alpha_a', 'jensen_a', 'track_error_a', 'info_a', 'm2_a'],
  664. [DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE]);
  665. UPDATE r
  666. SET alpha_a = alpha * iif(end_date - inception_date.month() > 12, plainAnnu, 1),
  667. jensen_a = jensen * iif(end_date - inception_date.month() > 12, plainAnnu, 1),
  668. track_error_a = track_error * iif(end_date - inception_date.month() > 12, sqrtAnnu, 1),
  669. info_a = info * iif(end_date - inception_date.month() > 12, sqrtAnnu, 1),
  670. m2_a = m2 * iif(end_date - inception_date.month() > 12, plainAnnu, 1)
  671. FROM ej(r, entity_info, 'entity_id');
  672. return r;
  673. }
  674. /*
  675. * Monthly standard indicator calculation
  676. *
  677. * @param entity_info <TABLE>:
  678. * @param benchmarks <TABLE>: entity-benchmark mapping table
  679. * @param end_day <DATE>:
  680. * @param tb_ret <TABLE>: 收益表,NEED COLUMNS entity_id, price_dat, end_date, nav
  681. * @param benchmark_ret <TABLE>: historical benchmark return table, NEED COLUMNS fund_id, end_date, ret
  682. * @param risk_free <TABLE>: historical risk free rate table, NEED COLUMNS fund_id, end_date, ret
  683. * @param month <STRING>:
  684. *
  685. * @return: indicators table
  686. *
  687. *
  688. * Create 20240904 模仿Java & python代码在Dolphin中实现,具体计算逻辑可能会有不同 Joey
  689. *
  690. */
  691. def cal_indicators(entity_info, benchmarks, end_day, tb_ret, benchmark_ret, risk_free, month) {
  692. if(entity_info.isVoid() || entity_info.size() == 0 || benchmarks.isVoid() || benchmarks.size() == 0 ) return null;
  693. if(tb_ret.isVoid() || tb_ret.size() == 0 || benchmark_ret.isVoid() || benchmark_ret.size() == 0 || risk_free.isVoid() || risk_free.size() == 0 ) return null;
  694. // sorting for correct first() and last() value
  695. ret = SELECT * FROM tb_ret WHERE end_date <= end_day.month() ORDER BY entity_id, price_date;
  696. // 收益、标准差、偏度、峰度、最大回撤、VaR, CVaR、卡玛比率
  697. rtn = cal_basic_performance(entity_info, ret, month);
  698. // 夏普
  699. sharpe = cal_sharpe(ret, rtn, risk_free, month);
  700. // 整合后的下行标准差、欧米伽、索提诺、卡帕
  701. lpms = cal_omega_sortino_kappa(ret, risk_free, month);
  702. // 需要基准的指标们
  703. indicator_with_benchmark = cal_indicators_with_benchmark(entity_info, benchmarks, end_day, ret, benchmark_ret, risk_free, month);
  704. r = SELECT * FROM rtn a1
  705. LEFT JOIN sharpe ON a1.entity_id = sharpe.entity_id AND a1.end_date = sharpe.end_date
  706. LEFT JOIN lpms ON a1.entity_id = lpms.entity_id AND a1.end_date = lpms.end_date
  707. LEFT JOIN indicator_with_benchmark bmk ON a1.entity_id = bmk.entity_id AND a1.end_date = bmk.end_date;
  708. // 晨星收益和风险
  709. if(month$STRING in ['36', '60', '120']) {
  710. ms = cal_ms_return(ret, risk_free, month);
  711. r = SELECT * FROM r LEFT JOIN ms ON r.entity_id = ms.entity_id AND r.end_date = ms.end_date;
  712. }
  713. // 年化各数据点
  714. // GIPS RULE: NO annulization for data less than 1 year
  715. plainAnnu = get_annulization_multiple('m');
  716. sqrtAnnu = sqrt(get_annulization_multiple('m'));
  717. r.addColumn(['std_dev_a', 'ds_dev_a', 'sharpe_a', 'sortino_a'],
  718. [DOUBLE, DOUBLE, DOUBLE, DOUBLE]);
  719. UPDATE r
  720. SET std_dev_a = std_dev * iif(end_date - inception_date.month() > 12, sqrtAnnu, 1),
  721. ds_dev_a = ds_dev * iif(end_date - inception_date.month() > 12, sqrtAnnu, 1),
  722. sharpe_a = sharpe * iif(end_date - inception_date.month() > 12, sqrtAnnu, 1),
  723. sortino_a = sortino * iif(end_date - inception_date.month() > 12, sqrtAnnu, 1)
  724. FROM ej(r, entity_info, 'entity_id');
  725. return r;
  726. }
  727. /*
  728. * Calculate trailing 3m, 6m, ytd, 1y, 2y, 3y, 4y, 5y, 10y and since inception datapoints
  729. *
  730. * @param: func <FUNCTION>: the calculation function
  731. * @param: entity_info <TABLE>: basic information of entity, NEED COLUMNS entity_id, inception_date
  732. * @param benchmarks <TABLE>: entity-benchmark mapping table
  733. * @param: end_day <DATE>: 计算截止日期
  734. * @param: ret <TABLE>: 收益表,NEED COLUMNS entity_id, price_dat, end_date, nav
  735. * @param bmk_ret <TABLE>: historical benchmark return table, NEED COLUMNS fund_id, end_date, ret
  736. * @param risk_free <TABLE>: historical risk free rate table, NEED COLUMNS fund_id, end_date, ret
  737. *
  738. *
  739. */
  740. def cal_trailing(func, entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate ) {
  741. r_incep = null;
  742. r_ytd = null;
  743. r_3m = null;
  744. r_6m = null;
  745. r_1y = null;
  746. r_2y = null;
  747. r_3y = null;
  748. r_4y = null;
  749. r_5y = null;
  750. r_10y = null;
  751. // incep
  752. r_incep = func(entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate, 'incep');
  753. // ytd
  754. r_ytd = func(entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate, 'ytd');
  755. // 3m 只需要支持收益计算
  756. r_3m = cal_basic_performance(entity_info, tb_ret, '3');
  757. // 6m
  758. r_6m = func(entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate, '6');
  759. // 1y
  760. r_1y = func(entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate, '12');
  761. // 2y
  762. r_2y = func(entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate, '24');
  763. // 3y
  764. r_3y = func(entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate, '36');
  765. // 4y
  766. r_4y = func(entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate, '48');
  767. // 5y
  768. r_5y = func(entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate, '60');
  769. // 10y
  770. r_10y = func(entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate, '120');
  771. return r_incep, r_ytd, r_3m, r_6m, r_1y, r_2y, r_3y, r_4y, r_5y, r_10y;
  772. }
  773. /*
  774. * Calculate trailing ytd, 3m, 6m, 1y, 2y, 3y, 4y, 5y, 10y and since inception standard indicators
  775. *
  776. * @param: entity_info <TABLE>: basic information of entity, NEED COLUMNS entity_id, inception_date
  777. * @param benchmarks <TABLE>: entity-benchmark mapping table
  778. * @param: ret <TABLE>: 收益表,NEED COLUMNS entity_id, price_dat, end_date, nav
  779. * @param: end_day <DATE>: 计算截止日期
  780. * @param bmk_ret <TABLE>: historical benchmark return table, NEED COLUMNS fund_id, end_date, ret
  781. * @param risk_free <TABLE>: historical risk free rate table, NEED COLUMNS fund_id, end_date, ret
  782. *
  783. */
  784. def cal_trailing_indicators(entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate) {
  785. return cal_trailing(cal_indicators, entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate);
  786. }
  787. /*
  788. * Calculate trailing ytd, 3m, 6m, 1y, 2y, 3y, 4y, 5y, 10y and since inception bfi indicators
  789. *
  790. * @param: entity_info <TABLE>: basic information of entity, NEED COLUMNS entity_id, inception_date
  791. * @param benchmarks <TABLE>: entity-benchmark mapping table
  792. * @param: ret <TABLE>: 收益表,NEED COLUMNS entity_id, price_dat, end_date, nav
  793. * @param: end_day <DATE>: 计算截止日期
  794. * @param bmk_ret <TABLE>: historical benchmark return table, NEED COLUMNS fund_id, end_date, ret
  795. * @param risk_free <TABLE>: historical risk free rate table, NEED COLUMNS fund_id, end_date, ret
  796. *
  797. * NOTE: 3m 的所有指标没有意义
  798. *
  799. *
  800. */
  801. def cal_trailing_bfi_indicators(entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate) {
  802. return cal_trailing(cal_indicators_with_benchmark, entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate);
  803. }
  804. /*
  805. * 通用月度指标计算
  806. *
  807. * @param entity_type <STRING>:
  808. * @param indicator_type <STRING>: PBI, BFI
  809. * @param monthly_returns <TABLE>: NEED COLUMN: entity_id, end_date, price_date, nav, ret
  810. *
  811. * @return <DICT TABLE>: ['PBI-INCEP', 'PBI-YTD', 'PBI-3M', 'PBI-6M', 'PBI-1Y', 'PBI-2Y', 'PBI-3Y', 'PBI-4Y', 'PBI-5Y', 'PBI-10Y']
  812. *
  813. */
  814. def cal_monthly_indicators(entity_type, indicator_type, monthly_returns) {
  815. if(find(['MF', 'HF', 'PF'], entity_type) < 0) return null;
  816. if(monthly_returns.isVoid() || monthly_returns.size() < 1) return null;
  817. oldest_date = EXEC price_date.min() FROM monthly_returns;
  818. v_entity_ids = (SELECT DISTINCT entity_id FROM monthly_returns).entity_id;
  819. entity_info = get_entity_info(entity_type, v_entity_ids);
  820. if(entity_info.isVoid() || entity_info.size() == 0) { return null };
  821. end_day = today();
  822. // 取基金和基准的对照表
  823. if(indicator_type == 'BFI') {
  824. benchmark = SELECT fund_id AS entity_id, end_date.temporalParse('yyyy-MM') AS end_date, factor_id AS benchmark_id
  825. FROM get_fund_bfi_factors(v_entity_ids, oldest_date.temporalFormat('yyyy-MM'), end_day.temporalFormat('yyyy-MM'));
  826. } else {
  827. // 主基准, 对应 xxx_info 中的 primary_benchmark_id
  828. benchmark = SELECT entity_id, end_date, iif(benchmark_id.isNull(), 'IN00000008', benchmark_id) AS benchmark_id
  829. FROM get_entity_primary_benchmark(entity_type, v_entity_ids, oldest_date.temporalFormat('yyyy-MM'), end_day.temporalFormat('yyyy-MM')) ;
  830. }
  831. // 取所有出现的基准月收益
  832. bmk_ret = get_benchmark_return(benchmark, end_day);
  833. if(bmk_ret.isVoid() || bmk_ret.size() == 0) { return null; }
  834. // TODO: risk free指数月收益存在fund_performance表,所以先将就用 fund_id 表示。之后统一改为更准确的名字
  835. risk_free_rate = SELECT entity_id AS fund_id, temporalParse(end_date, 'yyyy-MM') AS end_date, ret FROM get_risk_free_rate(oldest_date, end_day);
  836. if(risk_free_rate.isVoid() || risk_free_rate.size() == 0) { return null; }
  837. // 指标计算
  838. if(indicator_type == 'BFI') {
  839. t0 = cal_trailing_bfi_indicators(entity_info, benchmark, end_day, monthly_returns, bmk_ret, risk_free_rate);
  840. v_table_name = ['BFI-INCEP', 'BFI-YTD', 'BFI-3M', 'BFI-6M', 'BFI-1Y', 'BFI-2Y', 'BFI-3Y', 'BFI-4Y', 'BFI-5Y', 'BFI-10Y'];
  841. } else {
  842. t0 = cal_trailing_indicators(entity_info, benchmark, end_day, monthly_returns, bmk_ret, risk_free_rate);
  843. v_table_name = ['PBI-INCEP', 'PBI-YTD', 'PBI-3M', 'PBI-6M', 'PBI-1Y', 'PBI-2Y', 'PBI-3Y', 'PBI-4Y', 'PBI-5Y', 'PBI-10Y'];
  844. }
  845. return dict(v_table_name, t0);
  846. }
  847. /*
  848. * Calculate historcial fund trailing indicators
  849. *
  850. * @param entity_type <STRING>: MF, HF
  851. * @param fund_ids <STRING>: 逗号和单引号分隔的fund_id
  852. * @param end_day <DATE>: 要计算的日期
  853. * @param isFromNav <BOOL>: 用净值实时计算还是从表中取月收益
  854. * @param isFromSQL <BOOL>: TODO: 从MySQL还是本地DolphinDB取净值/收益数据
  855. *
  856. * @return <DICT TABLE>: ['PBI-INCEP', 'PBI-YTD', 'PBI-3M', 'PBI-6M', 'PBI-1Y', 'PBI-2Y', 'PBI-3Y', 'PBI-4Y', 'PBI-5Y', 'PBI-10Y', 'MS-3Y', 'MS-5Y', 'MS-10Y']
  857. *
  858. *
  859. * Example: cal_fund_indicators('HF', "'HF000004KN','HF000103EU','HF00018WXG'", 2024.06.28, true);
  860. *
  861. */
  862. def cal_fund_indicators(entity_type, fund_ids, end_day, isFromNav) {
  863. very_old_date = 1990.01.01;
  864. if(isFromNav == true) {
  865. // 从净值开始计算收益
  866. tb_ret = SELECT * FROM cal_fund_monthly_returns(entity_type, fund_ids, true) WHERE price_date <= end_day;
  867. tb_ret.rename!(['fund_id', 'cumulative_nav'], ['entity_id', 'nav']);
  868. } else {
  869. // 从fund_performance表里读月收益
  870. tb_ret = get_monthly_ret(entity_type, fund_ids, very_old_date, end_day, true);
  871. v_end_date = tb_ret.end_date.temporalParse('yyyy-MM');
  872. tb_ret.replaceColumn!('end_date', v_end_date);
  873. }
  874. if(tb_ret.isVoid() || tb_ret.size() == 0) { return null; }
  875. // 标准的指标
  876. d = cal_monthly_indicators(entity_type, 'PBI', tb_ret);
  877. return d;
  878. }
  879. /*
  880. * Calculate historcial fund trailing BFI indicators
  881. *
  882. * @param entity_type <STRING>: MF, HF
  883. * @param fund_ids <STRING>: 逗号和单引号分隔的fund_id
  884. * @param end_day <DATE>: 要计算的日期
  885. * @param isFromNav <BOOL>: 用净值实时计算还是从表中取月收益
  886. * @param isFromSQL <BOOL>: TODO: 从MySQL还是本地DolphinDB取净值/收益数据
  887. *
  888. * @return <DICT TABLE>: ['BFI-INCEP', 'BFI-YTD', 'BFI-3M', 'BFI-6M', 'BFI-1Y', 'BFI-2Y', 'BFI-3Y', 'BFI-4Y', 'BFI-5Y', 'BFI-10Y']
  889. *
  890. *
  891. * Example: cal_fund_bfi_indicators('MF', "'MF00003PW2', 'MF00003PW1', 'MF00003PXO'", 2024.08.31, true);
  892. *
  893. */
  894. def cal_fund_bfi_indicators(entity_type, fund_ids, end_day, isFromNav) {
  895. very_old_date = 1990.01.01;
  896. if(isFromNav == true) {
  897. // 从净值开始计算收益
  898. tb_ret = SELECT * FROM cal_fund_monthly_returns(entity_type, fund_ids, true) WHERE price_date <= end_day;
  899. tb_ret.rename!(['fund_id', 'cumulative_nav'], ['entity_id', 'nav']);
  900. } else {
  901. // 从fund_performance表里读月收益
  902. tb_ret = get_monthly_ret(entity_type, fund_ids, very_old_date, end_day, true);
  903. tb_ret.rename!(['fund_id'], ['entity_id']);
  904. v_end_date = tb_ret.end_date.temporalParse('yyyy-MM');
  905. tb_ret.replaceColumn!('end_date', v_end_date);
  906. }
  907. if(tb_ret.isVoid() || tb_ret.size() == 0) { return null; }
  908. // BFI指标
  909. d = cal_monthly_indicators(entity_type, 'BFI', tb_ret);
  910. return d;
  911. }
  912. /*
  913. * Calculate historcial portfolio trailing indicators
  914. *
  915. * @param portfolio_ids <STRING>: comma-delimited portfolio ids
  916. * @param end_day <DATE>: the date
  917. * @param cal_method <INT>: calculate based on cumulative nav (1) or nav (2)
  918. * @param isFromNav <BOOL>: calculate returns from NAV on-the-fly (true) or get from monthly return table (false)
  919. *
  920. * Example: cal_portfolio_indicators('166002,166114', 2024.08.31, 1, true);
  921. *
  922. */
  923. def cal_portfolio_indicators(portfolio_ids, end_day, cal_method, isFromNav) {
  924. very_old_date = 1990.01.01;
  925. start_month = very_old_date.month();
  926. portfolio_info = get_portfolio_info(portfolio_ids);
  927. if(portfolio_info.isVoid() || portfolio_info.size() == 0) { return null };
  928. portfolio_info.rename!('portfolio_id', 'entity_id');
  929. if(isFromNav == true) {
  930. // 从净值开始计算收益
  931. tb_raw_ret = SELECT * FROM cal_portfolio_nav(portfolio_ids, very_old_date, cal_method) WHERE price_date <= end_day;
  932. if(tb_raw_ret.isVoid() || tb_raw_ret.size() == 0) return null;
  933. // funky thing is you can't use "AS" for the grouping columns?
  934. tb_ret = SELECT portfolio_id, price_date.month(), price_date.last() AS price_date, (1+ret).prod()-1 AS ret, nav.last() AS nav
  935. FROM tb_raw_ret
  936. WHERE price_date <= end_day
  937. GROUP BY portfolio_id, price_date.month();
  938. tb_ret.rename!(['portfolio_id', 'month_price_date'], ['entity_id', 'end_date']);
  939. } else {
  940. // 从pf_portfolio_performance表里读月收益
  941. tb_ret = get_monthly_ret('PF', portfolio_ids, very_old_date, end_day, true);
  942. tb_ret.rename!(['portfolio_id'], ['entity_id']);
  943. v_end_date = tb_ret.end_date.temporalParse('yyyy-MM');
  944. tb_ret.replaceColumn!('end_date', v_end_date);
  945. }
  946. if(tb_ret.isVoid() || tb_ret.size() == 0) return null;
  947. // 混合因子做基准,同SQL保持一致
  948. t_dates = table(start_month..end_day.month() AS end_date);
  949. primary_benchmark = SELECT ei.entity_id, dt.end_date, 'FA00000VNB' AS benchmark_id
  950. FROM portfolio_info ei JOIN t_dates dt
  951. WHERE dt.end_date >= ei.inception_date.month();
  952. if(primary_benchmark.isVoid() || primary_benchmark.size() == 0) { return null; }
  953. // 取所有出现的基准月收益
  954. bmk_ret = get_benchmark_return(primary_benchmark, end_day);
  955. if(bmk_ret.isVoid() || bmk_ret.size() == 0) { return null; }
  956. // TODO: risk free指数月收益存在fund_performance表,所以先将就用 fund_id 表示。之后统一改为更准确的名字
  957. risk_free_rate = SELECT entity_id AS fund_id, temporalParse(end_date, 'yyyy-MM') AS end_date, ret FROM get_risk_free_rate(very_old_date, end_day);
  958. if(risk_free_rate.isVoid() || risk_free_rate.size() == 0) { return null; }
  959. t0 = cal_trailing_indicators(portfolio_info, primary_benchmark, end_day, tb_ret, bmk_ret, risk_free_rate);
  960. v_table_name = ['PBI-INCEP', 'PBI-YTD', 'PBI-6M', 'PBI-1Y', 'PBI-2Y', 'PBI-3Y', 'PBI-4Y', 'PBI-5Y', 'PBI-10Y'];
  961. return dict(v_table_name, t0);
  962. }
  963. /*
  964. * Calculate historcial portfolio trailing BFI indicators
  965. *
  966. * @param portfolio_ids <STRING>: comma-delimited portfolio ids
  967. * @param end_day <DATE>: the date
  968. * @param cal_method <INT>: calculate based on cumulative nav (1) or nav (2)
  969. * @param isFromNav <BOOL>: calculate returns from NAV on-the-fly (true) or get from monthly return table (false)
  970. *
  971. * TODO: intergrate with cal_portfolio_indicators
  972. *
  973. * Example: cal_portfolio_bfi_indicators('166002,166114', 2024.08.31, 1, true);
  974. *
  975. */
  976. def cal_portfolio_bfi_indicators(portfolio_ids, end_day, cal_method, isFromNav) {
  977. very_old_date = 1990.01.01;
  978. start_month = 1990.01M;
  979. portfolio_info = get_portfolio_info(portfolio_ids);
  980. if(portfolio_info.isVoid() || portfolio_info.size() == 0) { return null };
  981. portfolio_info.rename!('portfolio_id', 'entity_id');
  982. if(isFromNav == true) {
  983. // 从净值开始计算收益
  984. tb_raw_ret = SELECT * FROM cal_portfolio_nav(portfolio_ids, very_old_date, cal_method) WHERE price_date <= end_day;
  985. if(tb_raw_ret.isVoid() || tb_raw_ret.size() == 0) return null;
  986. // funky thing is you can't use "AS" for the grouping columns?
  987. tb_ret = SELECT portfolio_id, price_date.month(), price_date.last() AS price_date, (1+ret).prod()-1 AS ret, nav.last() AS nav
  988. FROM tb_raw_ret
  989. WHERE price_date <= end_day
  990. GROUP BY portfolio_id, price_date.month();
  991. tb_ret.rename!(['portfolio_id', 'month_price_date'], ['entity_id', 'end_date']);
  992. } else {
  993. // 从pf_portfolio_performance表里读月收益
  994. tb_ret = get_monthly_ret('PF', portfolio_ids, very_old_date, end_day, true);
  995. tb_ret.rename!(['portfolio_id'], ['entity_id']);
  996. v_end_date = tb_ret.end_date.temporalParse('yyyy-MM');
  997. tb_ret.replaceColumn!('end_date', v_end_date);
  998. }
  999. if(tb_ret.isVoid() || tb_ret.size() == 0) return null;
  1000. // 取组合和基准的对照表
  1001. bfi_benchmark = SELECT portfolio_id AS entity_id, end_date.temporalParse('yyyy-MM') AS end_date, factor_id AS benchmark_id
  1002. FROM get_portfolio_bfi_factors(portfolio_ids, start_month.temporalFormat('yyyy-MM'), end_day.temporalFormat('yyyy-MM'));
  1003. if(bfi_benchmark.isVoid() || bfi_benchmark.size() == 0) { return null; }
  1004. bmk_ret = get_benchmark_return(bfi_benchmark, end_day);
  1005. if(bmk_ret.isVoid() || bmk_ret.size() == 0) { return null; }
  1006. // TODO: risk free指数月收益存在fund_performance表,所以先将就用 fund_id 表示。之后统一改为更准确的名字
  1007. risk_free_rate = SELECT entity_id AS fund_id, temporalParse(end_date, 'yyyy-MM') AS end_date, ret FROM get_risk_free_rate(very_old_date, end_day);
  1008. if(risk_free_rate.isVoid() || risk_free_rate.size() == 0) { return null; }
  1009. t0 = cal_trailing_bfi_indicators(portfolio_info, bfi_benchmark, end_day, tb_ret, bmk_ret, risk_free_rate);
  1010. v_table_name = ['PBI-INCEP', 'PBI-YTD', 'PBI-6M', 'PBI-1Y', 'PBI-2Y', 'PBI-3Y', 'PBI-4Y', 'PBI-5Y', 'PBI-10Y'];
  1011. return dict(v_table_name, t0);
  1012. }