returnCalculator.dos 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429
  1. module fundit::returnCalculator
  2. use fundit::sqlUtilities
  3. use fundit::operationDataPuller
  4. use fundit::performanceDataPuller
  5. /*
  6. * 通用月收益计算
  7. *
  8. * @param entity_info <TABLE>: [COLUMNS] entity_id, price_date, inception_date, ini_value
  9. * @param nav <TABLE>: [COLUMNS] entity_id, price_date, cumulative_nav
  10. *
  11. */
  12. def cal_monthly_returns_by_nav(entity_info, mutable nav) {
  13. tb_rets = null;
  14. if(nav.isVoid() || nav.size() == 0 || entity_info.isVoid() || entity_info.size() == 0 ) return null;
  15. // 所有月末日期和净值
  16. tb_monthly_nav = SELECT entity_id, price_date.month().last() AS end_date, price_date.last() AS price_date, cumulative_nav.last() AS cumulative_nav
  17. FROM nav.sortBy!(['entity_id', 'price_date'], [1, 1])
  18. GROUP BY entity_id, price_date.month();
  19. // 筛掉成立日之前的净值
  20. tb_monthly_nav = SELECT n.entity_id, end_date, price_date, cumulative_nav
  21. FROM tb_monthly_nav n
  22. INNER JOIN entity_info ei ON n.entity_id = ei.entity_id
  23. WHERE n.price_date >= ei.inception_date;
  24. // 补回来成立日初始净值
  25. INSERT INTO tb_monthly_nav
  26. SELECT entity_id, inception_date.month(), inception_date, ini_value
  27. FROM entity_info
  28. WHERE inception_date IS NOT NULL;
  29. if(tb_monthly_nav.isVoid() || tb_monthly_nav.size() == 0) { return tb_rets; }
  30. // 计算月收益
  31. tb_rets = SELECT entity_id, end_date, price_date, cumulative_nav, cumulative_nav.ratios() - 1 AS ret
  32. FROM tb_monthly_nav.sortBy!(['entity_id', 'price_date'], [1, 1])
  33. CONTEXT BY entity_id;
  34. // the records without return calculated but do have nav are still useful for some calculations (e.g. max drawdown)
  35. return ( SELECT * FROM tb_rets WHERE cumulative_nav > 0 );
  36. }
  37. /*
  38. * 根据最新更新的净值计算收益,并与数据库历史收益合并为完整收益, 数据源是MySQL
  39. *
  40. * @param entity_type <STRING>:
  41. * @param entity_info <TABLE>: COLUMN NEED entity_id, inception_date, benchmark_id, ini_value, price_date
  42. * @param start_date <DATETIME>: 净值(datasource='nav')、收益起始日(datasource='perf')、净值更新的最新日期(datasource='mix')
  43. * @param data_source <STRING>: nav(nav table), perf(xxx_performance table), mix(new updated nav + old performance table ret_1m)
  44. *
  45. *
  46. */
  47. def mix_monthly_returns(entity_type, entity_info) {
  48. ret = null;
  49. very_old_day = 1990.01.01;
  50. end_day = today();
  51. s_json = (SELECT entity_id AS sec_id, price_date FROM entity_info).toStdJson();
  52. // 取基金组合在包括各自的某净值日期的前值及之后的所有净值
  53. tb_nav = get_nav_for_return_calculation(entity_type, 'm', s_json);
  54. tb_nav.rename!('sec_id', 'entity_id');
  55. // 计算某净值日期所在月份及之后的所有月收益
  56. ret = cal_monthly_returns_by_nav(entity_info, tb_nav);
  57. if(ret.isVoid() || ret.size() == 0) return ret;
  58. // 筛掉引入的前值,这些记录用来计算第一期收益后就不再有用
  59. // 不知道为什么 delete ret from ej(ret, tb_entities, 'entity_id') where ret.price_date < tb_entities.price_date 会报错
  60. ret = SELECT ret.* FROM ej(ret, entity_info, 'entity_id')
  61. WHERE ret.price_date >= entity_info.price_date;
  62. // 取数据库中的所有历史收益
  63. historical_rets = get_monthly_ret(entity_type, entity_info.entity_id, very_old_day, end_day, true);
  64. // MIX 将新NAV计算的收益和数据库中的历史收益合并,相同月份时用新计算的收益代替
  65. INSERT INTO ret
  66. SELECT entity_id, end_date.temporalParse('yyyy-MM'), price_date, nav, ret
  67. FROM historical_rets h
  68. WHERE NOT EXISTS ( SELECT * FROM ret WHERE entity_id = historical_rets.entity_id AND end_date = historical_rets.end_date.temporalParse('yyyy-MM') );
  69. // 过滤掉成立日之前的收益
  70. return SELECT ret.*
  71. FROM ret INNER JOIN entity_info ei ON ret.entity_id = ei.entity_id
  72. WHERE ret.end_date >= ei.inception_date.month()
  73. ORDER BY entity_id, end_date, price_date;
  74. }
  75. /*
  76. * 根据基金净值序列计算周收益序列
  77. *
  78. * Create: 20240907 Joey
  79. * TODO: missing pulling data from local
  80. *
  81. * @param entity_type <STRING>: NAV universe, 'HF','MF','PF','EQ'... defined in get_nav_table_description()
  82. * @param entity_info <TABLE>: COLUMN NEED entity_id, price_date, inception_date
  83. *
  84. *
  85. */
  86. def cal_weekly_returns(entity_type, entity_info){
  87. tb_rets_1w = null;
  88. if(!(entity_type IN ['HF', 'MF', 'PF', 'MI', 'FI', 'FA'])) return tb_rets_1w;
  89. // 将每支证券ID+某个日期转为JSON用于调用sp
  90. s_json = (SELECT entity_id AS sec_id, price_date FROM entity_info).toStdJson();
  91. // 取基金组合在包括各自的某净值日期的前值及之后的所有净值
  92. tb_nav = get_nav_for_return_calculation(entity_type, 'w', s_json);
  93. tb_nav.rename!('sec_id', 'entity_id');
  94. UPDATE tb_nav SET year_week = get_year_week(price_date);
  95. // 这里选最简单的计算方式:不补任何净值空洞,净值前值日期不做任何限制
  96. // TODO: 可以考虑将月收益也改为这种方式
  97. tb_rets_1w = SELECT entity_id, year_week, price_date, cumulative_nav, cumulative_nav.ratios()-1 AS ret_1w
  98. FROM tb_nav
  99. ORDER BY entity_id, year_week;
  100. return SELECT * FROM tb_rets_1w WHERE ret_1w > -1;
  101. }
  102. /*
  103. * 批量计算区间收益
  104. * TODO: mySQL version 向前取4天,向后不做限制。这里的逻辑是向前取4个交易日, 遇到大长假后可能取不到数据
  105. * 【老程序,可优化】
  106. *
  107. * get_trailing_return(tb_last_nav, tb_nav, -7d, "ret_1w")
  108. *
  109. */
  110. def get_trailing_return(table_last_nav, table_nav, duration, return_column_name) {
  111. tb = SELECT a.entity_id, a.price_date.last() AS price_date, a.cumulative_nav.last() \ b.cumulative_nav.last() - 1 AS ret
  112. FROM table_last_nav a
  113. INNER JOIN table_nav b ON a.entity_id = b.entity_id
  114. WHERE b.price_date <= a.price_date.datetimeAdd(duration)
  115. AND b.price_date >= a.price_date.datetimeAdd(duration).datetimeAdd(-4d).businessDay()
  116. GROUP BY a.entity_id
  117. ORDER BY entity_id;
  118. tb.rename!("ret", return_column_name);
  119. return tb;
  120. }
  121. /*
  122. * 批量计算区间收益
  123. * TODO: mySQL version 向前取4天,向后不做限制。这里的逻辑是向前取4个交易日, 遇到大长假后可能取不到数据
  124. *
  125. *
  126. *
  127. */
  128. def get_trailing_return2(entity_type, tb_last_nav, duration, return_column_name) {
  129. // 在往前减duration代表的区间后往后加1天才能取前值
  130. s_json = (SELECT sec_id, price_date.temporalAdd(duration).temporalAdd(1d) AS price_date FROM tb_last_nav).toStdJson();
  131. tb_pre_nav = get_nav_for_return_calculation(entity_type, 'd', s_json, pre_nav_incld=1);
  132. tb = SELECT n.sec_id AS entity_id, n.price_date, n.cumulative_nav \ p.cumulative_nav - 1 AS ret
  133. FROM tb_last_nav n
  134. INNER JOIN tb_pre_nav p ON n.sec_id = p.sec_id
  135. WHERE n.cumulative_nav > 0
  136. AND p.cumulative_nav > 0
  137. AND n.price_date.temporalAdd(duration) <= p.price_date.temporalAdd(4B);
  138. tb.rename!("ret", return_column_name);
  139. return tb;
  140. }
  141. /*
  142. * 批量计算区间最大回撤
  143. *
  144. * NOTE: 简单起见,和计算收益不同,这里并不往前找可用净值
  145. *
  146. */
  147. def get_trailing_max_drawdown(entity_type, tb_last_nav, duration, drawdown_column_name) {
  148. // 取区间净值
  149. s_json = (SELECT sec_id, price_date.temporalAdd(duration) AS price_date FROM tb_last_nav).toStdJson();
  150. tb_pre_nav = get_nav_for_return_calculation(entity_type, 'd', s_json, pre_nav_incld=0);
  151. tb = SELECT n.sec_id, cumulative_nav.maxDrawdown() AS max_drawdown
  152. FROM tb_last_nav n
  153. GROUP BY n.sec_id;
  154. tb.rename!(['sec_id', 'max_drawdown'], ['entity_id', drawdown_column_name]);
  155. return tb;
  156. }
  157. /*
  158. * 批量计算最新收益
  159. *
  160. * @param entity_info <TABLE>: [COLUMNS] entity_id, price_date, inception_date, benchmark_id, ini_value
  161. *
  162. * NOTE: 取消了最大回撤和卡玛
  163. *
  164. */
  165. def cal_latest_performance2(entity_type, entity_info, isFromMySQL) {
  166. // 取最新净值
  167. s_json = (SELECT entity_id AS sec_id, today() AS price_date FROM entity_info).toStdJson();
  168. tb_last_nav = get_nav_for_return_calculation(entity_type, 'd', s_json, pre_nav_incld=1);
  169. if(tb_last_nav.isVoid() || tb_last_nav.size() == 0) return;
  170. // 近1期收益,对应mySQL fund_latest_nav_performance 中的 net_value_change
  171. s_json = (SELECT sec_id, price_date FROM tb_last_nav).toStdJson();
  172. tb_pre_nav = get_nav_for_return_calculation(entity_type, 'd', s_json, pre_nav_incld=1);
  173. tb_last_return = SELECT n.sec_id AS entity_id, n.price_date, p.price_date AS pre_price_date, n.cumulative_nav, n.nav, n.cumulative_nav \ p.cumulative_nav - 1 AS net_value_change
  174. FROM tb_last_nav n
  175. INNER JOIN tb_pre_nav p ON n.sec_id = p.sec_id
  176. WHERE p.cumulative_nav > 0
  177. AND n.cumulative_nav > 0;
  178. // 近1交易日收益
  179. tb_1d = SELECT entity_id, price_date, net_value_change AS ret_1d
  180. FROM tb_last_return
  181. WHERE price_date = pre_price_date.temporalAdd(1d).businessDay();
  182. // 近1周、1/3/6月、1/2/3/4/5/10年收益
  183. tb_1w = get_trailing_return2(entity_type, tb_last_nav, -7d, "ret_1w");
  184. tb_1m = get_trailing_return2(entity_type, tb_last_nav, -1M, "ret_1m");
  185. tb_3m = get_trailing_return2(entity_type, tb_last_nav, -3M, "ret_3m");
  186. tb_6m = get_trailing_return2(entity_type, tb_last_nav, -6M, "ret_6m");
  187. tb_1y = get_trailing_return2(entity_type, tb_last_nav, -1y, "ret_1y");
  188. tb_2y = get_trailing_return2(entity_type, tb_last_nav, -2y, "ret_2y");
  189. tb_3y = get_trailing_return2(entity_type, tb_last_nav, -3y, "ret_3y");
  190. tb_4y = get_trailing_return2(entity_type, tb_last_nav, -4y, "ret_4y");
  191. tb_5y = get_trailing_return2(entity_type, tb_last_nav, -5y, "ret_5y");
  192. tb_10y = get_trailing_return2(entity_type, tb_last_nav, -10y, "ret_10y");
  193. // ytd return
  194. s_json = (SELECT sec_id, price_date.yearBegin() AS price_date FROM tb_last_nav).toStdJson();
  195. tb_pre_nav = get_nav_for_return_calculation(entity_type, 'd', s_json, pre_nav_incld=1);
  196. tb_ytd = SELECT n.sec_id AS entity_id, n.price_date, n.cumulative_nav \ p.cumulative_nav - 1 AS ret_ytd
  197. FROM tb_last_nav n
  198. INNER JOIN tb_pre_nav p ON n.sec_id = p.sec_id
  199. WHERE p.cumulative_nav > 0
  200. AND n.cumulative_nav > 0
  201. AND n.price_date.yearBegin() <= p.price_date.temporalAdd(4B);
  202. // since inception return
  203. tb_incep = SELECT a.sec_id AS entity_id, a.price_date, -1 + cumulative_nav \ ini_value AS ret_incep, fi.inception_date
  204. FROM tb_last_nav a
  205. INNER JOIN entity_info fi ON a.sec_id = fi.entity_id
  206. // annulized since reception return following GIPS rule
  207. UPDATE tb_incep SET ret_incep_a = iif((price_date-inception_date)<=365, ret_incep, (1 + ret_incep).pow(365.25\(price_date-inception_date)) - 1)
  208. UPDATE tb_incep SET ret_incep_a_all = ret_incep_a,
  209. ret_incep_a_gips = ret_incep_a
  210. /*
  211. // 最大回撤, max_drawdown_incep 太耗流量会导致 out-of-memory 错误
  212. tb_drawdown_1m = get_trailing_max_drawdown(entity_type, tb_last_nav, -1M, "drawdown_1m");
  213. tb_drawdown_3m = get_trailing_max_drawdown(entity_type, tb_last_nav, -3M, "drawdown_3m");
  214. tb_drawdown_1y = get_trailing_max_drawdown(entity_type, tb_last_nav, -1y, "drawdown_1y");
  215. */
  216. tb_rets = SELECT a.entity_id, a.price_date.datetimeFormat("yyyy-MM") AS end_date, a.price_date, a.pre_price_date, a.nav, a.cumulative_nav,
  217. a.net_value_change, d1.ret_1d, w1.ret_1w, m1.ret_1m, m3.ret_3m, m6.ret_6m,
  218. y1.ret_1y, y2.ret_2y, y3.ret_3y, y4.ret_4y, y5.ret_5y, y10.ret_10y,
  219. ytd.ret_ytd, incep.ret_incep, incep.ret_incep_a, incep.ret_incep_a_all, incep.ret_incep_a_gips,
  220. double(NULL) AS maxdrawdown_1m, double(NULL) AS maxdrawdown_3m, double(NULL) AS maxdrawdown_1y,
  221. double(NULL) AS maxdrawdown_incep,
  222. double(NULL) AS calmarratio_incep
  223. FROM tb_last_return a
  224. LEFT JOIN tb_1d d1 ON a.entity_id = d1.entity_id
  225. LEFT JOIN tb_1w w1 ON a.entity_id = w1.entity_id
  226. LEFT JOIN tb_1m m1 ON a.entity_id = m1.entity_id
  227. LEFT JOIN tb_3m m3 ON a.entity_id = m3.entity_id
  228. LEFT JOIN tb_6m m6 ON a.entity_id = m6.entity_id
  229. LEFT JOIN tb_1y y1 ON a.entity_id = y1.entity_id
  230. LEFT JOIN tb_2y y2 ON a.entity_id = y2.entity_id
  231. LEFT JOIN tb_3y y3 ON a.entity_id = y3.entity_id
  232. LEFT JOIN tb_4y y4 ON a.entity_id = y4.entity_id
  233. LEFT JOIN tb_5y y5 ON a.entity_id = y5.entity_id
  234. LEFT JOIN tb_10y y10 ON a.entity_id = y10.entity_id
  235. LEFT JOIN tb_ytd ytd ON a.entity_id = ytd.entity_id
  236. LEFT JOIN tb_incep incep ON a.entity_id = incep.entity_id
  237. ORDER BY a.entity_id
  238. // 忽略掉非GIPS标准的所有年化收益字段(包括ytd_a)
  239. UPDATE tb_rets SET ret_1y_a = ret_1y, ret_2y_a = (1 + ret_2y).pow(1\2) - 1, ret_3y_a = (1 + ret_3y).pow(1\3) - 1,
  240. ret_4y_a = (1 + ret_4y).pow(1\4) - 1, ret_5y_a = (1 + ret_5y).pow(1\5) - 1, ret_10y_a = (1 + ret_10y).pow(1\10) - 1
  241. return tb_rets
  242. }
  243. /*
  244. * 批量计算最新收益
  245. *
  246. @param entity_info <TABLE>: [COLUMNS] entity_id, price_date, inception_date, benchmark_id, ini_value
  247. *
  248. */
  249. def cal_latest_performance(entity_type, entity_info, isFromMySQL) {
  250. // 用于保证老基金也能取到所有历史净值
  251. very_old_price_date = 1990.01.01
  252. tb_nav = get_nav_by_price_date(entity_type, entity_info.entity_id, very_old_price_date, isFromMySQL)
  253. tb_last_nav = SELECT entity_id, price_date.last() AS price_date, cumulative_nav.last() AS cumulative_nav
  254. FROM tb_nav
  255. GROUP BY entity_id
  256. ORDER BY entity_id
  257. // 近1期收益,对应mySQL fund_latest_nav_performance 中的 net_value_change
  258. // 因为是倒序,所以算出来的 ratios() = n0 / n1, 要把它改换成 n1 / n0 - 1 的收益
  259. tb_last_return = SELECT TOP 2 entity_id, price_date.first() AS price_date, price_date AS pre_preice_date,
  260. nav.first() AS nav, cumulative_nav.first() AS cumulative_nav, 1\cumulative_nav.ratios() - 1 AS net_value_change
  261. FROM ( SELECT * FROM tb_nav ORDER BY price_date DESC )
  262. CONTEXT BY entity_id
  263. ORDER BY entity_id
  264. tb_last_return = SELECT * FROM tb_last_return WHERE net_value_change IS NOT NULL
  265. // 近1交易日收益
  266. tb_1d = SELECT a.entity_id, a.price_date, a.cumulative_nav \ b.cumulative_nav - 1 AS ret_1d
  267. FROM tb_last_nav a
  268. INNER JOIN tb_nav b ON a.entity_id = b.entity_id AND b.price_date = a.price_date.datetimeAdd(-1d).businessDay()
  269. ORDER BY entity_id
  270. // 近1周、1/3/6月、1/2/3/4/5/10年收益
  271. tb_1w = get_trailing_return(tb_last_nav, tb_nav, -7d, "ret_1w")
  272. tb_1m = get_trailing_return(tb_last_nav, tb_nav, -1M, "ret_1m")
  273. tb_3m = get_trailing_return(tb_last_nav, tb_nav, -3M, "ret_3m")
  274. tb_6m = get_trailing_return(tb_last_nav, tb_nav, -6M, "ret_6m")
  275. tb_1y = get_trailing_return(tb_last_nav, tb_nav, -1y, "ret_1y")
  276. tb_2y = get_trailing_return(tb_last_nav, tb_nav, -2y, "ret_2y")
  277. tb_3y = get_trailing_return(tb_last_nav, tb_nav, -3y, "ret_3y")
  278. tb_4y = get_trailing_return(tb_last_nav, tb_nav, -4y, "ret_4y")
  279. tb_5y = get_trailing_return(tb_last_nav, tb_nav, -5y, "ret_5y")
  280. tb_10y = get_trailing_return(tb_last_nav, tb_nav, -10y, "ret_10y")
  281. // ytd return
  282. tb_ytd = SELECT a.entity_id, a.price_date.last() AS price_date, a.cumulative_nav.last() \ b.cumulative_nav.last() - 1 AS ret_ytd
  283. FROM tb_last_nav a
  284. INNER JOIN tb_nav b ON a.entity_id = b.entity_id
  285. WHERE b.price_date < a.price_date.yearBegin()
  286. AND b.price_date >= a.price_date.yearBegin().datetimeAdd(-4d)
  287. GROUP BY a.entity_id
  288. // since inception return
  289. tb_incep = SELECT a.entity_id, a.price_date, -1 + cumulative_nav \ ini_value AS ret_incep, fi.inception_date
  290. FROM tb_last_nav a
  291. INNER JOIN entity_info fi ON a.entity_id = fi.entity_id
  292. // annulized since reception return following GIPS rule
  293. UPDATE tb_incep SET ret_incep_a = iif((price_date-inception_date)<=365, ret_incep, (1 + ret_incep).pow(365.25\(price_date-inception_date)) - 1)
  294. UPDATE tb_incep SET ret_incep_a_all = ret_incep_a,
  295. ret_incep_a_gips = ret_incep_a
  296. // 最大回撤
  297. tb_drawdown_1m = SELECT a.entity_id, max( 1 - b.cumulative_nav \ b.cumulative_nav.cummax() ) AS drawdown_1m
  298. FROM tb_last_return a
  299. INNER JOIN tb_nav b ON a.entity_id = b.entity_id
  300. WHERE b.price_date >= a.price_date.datetimeAdd(-1M)
  301. GROUP BY a.entity_id
  302. tb_drawdown_3m = SELECT a.entity_id, max( 1 - b.cumulative_nav \ b.cumulative_nav.cummax() ) AS drawdown_3m
  303. FROM tb_last_return a
  304. INNER JOIN tb_nav b ON a.entity_id = b.entity_id
  305. WHERE b.price_date >= a.price_date.datetimeAdd(-3M)
  306. GROUP BY a.entity_id
  307. tb_drawdown_1y = SELECT a.entity_id, max( 1 - b.cumulative_nav \ b.cumulative_nav.cummax() ) AS drawdown_1y
  308. FROM tb_last_return a
  309. INNER JOIN tb_nav b ON a.entity_id = b.entity_id
  310. WHERE b.price_date >= a.price_date.datetimeAdd(-1y)
  311. GROUP BY a.entity_id
  312. tb_drawdown_incep = SELECT entity_id, max( 1 - cumulative_nav \ cumulative_nav.cummax() ) AS drawdown_incep
  313. FROM tb_nav GROUP BY entity_id
  314. tb_rets = SELECT a.entity_id, a.price_date.datetimeFormat("yyyy-MM") AS end_date, a.price_date, a.pre_preice_date, a.nav, a.cumulative_nav,
  315. a.net_value_change, d1.ret_1d, w1.ret_1w, m1.ret_1m, m3.ret_3m, m6.ret_6m,
  316. y1.ret_1y, y2.ret_2y, y3.ret_3y, y4.ret_4y, y5.ret_5y, y10.ret_10y,
  317. ytd.ret_ytd, incep.ret_incep, incep.ret_incep_a, incep.ret_incep_a_all, incep.ret_incep_a_gips,
  318. dd_m1.drawdown_1m AS maxdrawdown_1m, dd_m3.drawdown_3m AS maxdrawdown_3m, dd_y1.drawdown_1y AS maxdrawdown_1y,
  319. dd_incep.drawdown_incep AS maxdrawdown_incep,
  320. iif(dd_incep.drawdown_incep.round(4) == 0 || incep.ret_incep_a > 1000, NULL, incep.ret_incep_a \ dd_incep.drawdown_incep) AS calmarratio_incep
  321. FROM tb_last_return a
  322. LEFT JOIN tb_1d d1 ON a.entity_id = d1.entity_id
  323. LEFT JOIN tb_1w w1 ON a.entity_id = w1.entity_id
  324. LEFT JOIN tb_1m m1 ON a.entity_id = m1.entity_id
  325. LEFT JOIN tb_3m m3 ON a.entity_id = m3.entity_id
  326. LEFT JOIN tb_6m m6 ON a.entity_id = m6.entity_id
  327. LEFT JOIN tb_1y y1 ON a.entity_id = y1.entity_id
  328. LEFT JOIN tb_2y y2 ON a.entity_id = y2.entity_id
  329. LEFT JOIN tb_3y y3 ON a.entity_id = y3.entity_id
  330. LEFT JOIN tb_4y y4 ON a.entity_id = y4.entity_id
  331. LEFT JOIN tb_5y y5 ON a.entity_id = y5.entity_id
  332. LEFT JOIN tb_10y y10 ON a.entity_id = y10.entity_id
  333. LEFT JOIN tb_ytd ytd ON a.entity_id = ytd.entity_id
  334. LEFT JOIN tb_incep incep ON a.entity_id = incep.entity_id
  335. LEFT JOIN tb_drawdown_1m dd_m1 ON a.entity_id = dd_m1.entity_id
  336. LEFT JOIN tb_drawdown_3m dd_m3 ON a.entity_id = dd_m3.entity_id
  337. LEFT JOIN tb_drawdown_1y dd_y1 ON a.entity_id = dd_y1.entity_id
  338. LEFT JOIN tb_drawdown_incep dd_incep ON a.entity_id = dd_incep.entity_id
  339. ORDER BY a.entity_id
  340. // 忽略掉非GIPS标准的所有年化收益字段(包括ytd_a)
  341. UPDATE tb_rets SET ret_1y_a = ret_1y, ret_2y_a = (1 + ret_2y).pow(1\2) - 1, ret_3y_a = (1 + ret_3y).pow(1\3) - 1,
  342. ret_4y_a = (1 + ret_4y).pow(1\4) - 1, ret_5y_a = (1 + ret_5y).pow(1\5) - 1, ret_10y_a = (1 + ret_10y).pow(1\10) - 1
  343. return tb_rets
  344. }