123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853 |
- module fundit::indicatorCalculator
- use fundit::dataPuller
- use fundit::returnCalculator
- use fundit::navCalculator
- /*
- * Annulized multiple
- */
- def get_annulization_multiple(freq) {
- ret = 1;
-
- if (freq == 'd') {
- ret = 252; // We have differences here between Java and DolphinDB, Java uses 365.25 days
- } else if (freq == 'w') {
- ret = 52;
- } else if (freq == 'm') {
- ret = 12;
- } else if (freq == 'q') {
- ret = 4;
- } else if (freq == 's') {
- ret = 2;
- } else if (freq == 'a') {
- ret = 1;
- }
-
- return ret;
- }
- /*
- * 取主基准和BFI的历史月收益率
- *
- * @param benchmarks <TABLE>: entity-benchmark 的对应关系表
- * @param end_day <DATE>: 收益的截止日期
- *
- * @return <TABLE>: benchmark_id, end_date, ret
- *
- */
- def get_benchmark_return(benchmarks, end_day) {
- s_index_ids = '';
- s_factor_ids = '';
- if(benchmarks.isVoid() || benchmarks.size() == 0) { return null; }
- // 前缀为 IN 的 benchmark id
- t_index_id = SELECT DISTINCT benchmark_id FROM benchmarks WHERE benchmark_id LIKE 'IN%';
- s_index_ids = iif(isVoid(t_index_id), "", "'" + t_index_id.benchmark_id.concat("','") + "'");
- // 前缀为 FA 的 benchmark id
- t_factor_id = SELECT DISTINCT benchmark_id FROM benchmarks WHERE benchmark_id LIKE 'FA%';
- s_factor_ids = iif(isVoid(t_factor_id), "", "'" + t_factor_id.benchmark_id.concat("','") + "'");
- // 目前指数的月度业绩存在 fund_performance 表
- t_bmk = SELECT fund_id AS benchmark_id, temporalParse(end_date, 'yyyy-MM') AS end_date, ret FROM get_monthly_ret('IX', s_index_ids, 1990.01.01, end_day, true);
- // 而因子的月度业绩存在 cm_factor_performance 表
- INSERT INTO t_bmk SELECT factor_id, temporalParse(end_date, 'yyyy-MM') AS end_date, ret FROM get_monthly_ret('FA', s_factor_ids, 1990.01.01, end_day, true);
- return t_bmk;
- }
- /*
- * Trailing Return, Standard Deviation, Skewness, Kurtosis, Max Drawdown, VaR, CVaR
- * @param ret: 收益表,需要有 entity_id, price_dat, end_date, nav
- * @param freq: 数据频率,d, w, m, q, s, a
- *
- * NOTE: standard deviation of Java version is noncompliant-GIPS annulized number
- *
- * Create: 20240904 Joey
- * TODO: var and cvar are silightly off compared with Java version
- *
- */
- def cal_basic_performance(ret, freq) {
- t = SELECT entity_id, max(end_date) AS end_date, max(price_date) AS price_date, min(price_date) AS min_date,
- //(nav.last() \ nav.first() - 1).round(6) AS trailing_ret,
- ((1+ret).prod()-1).round(6) AS trailing_ret,
- iif(price_date.max().month()-price_date.min().month()>12,
- //(nav.last() \ nav.first()).pow(365 \(max(price_date) - min(price_date)))-1,
- //(nav.last() \ nav.first() - 1)).round(6) AS trailing_ret_a,
- ((1+ret).prod()-1) * sqrt(get_annulization_multiple(freq)),
- ((1+ret).prod()-1)).round(6) AS trailing_ret_a,
- ret.std() AS std_dev,
- ret.skew(false) AS skewness,
- ret.kurtosis(false) - 3 AS kurtosis,
- ret.min() AS wrst_month,
- max( 1 - nav \ nav.cummax() ) AS drawdown
- FROM ret
- GROUP BY entity_id;
- // var & cvar require return NOT NULL
- // NOTE: DolphinDB supports 4 different ways: normal, logNormal, historical, monteCarlo. we use historical
- t1 = SELECT entity_id, max(end_date) AS end_date, max(price_date) AS price_date,
- ret.VaR('historical', 0.95) AS var,
- ret.CVaR('historical', 0.95) AS cvar
- FROM ret
- WHERE ret.ret > - 1
- GROUP BY entity_id;
- return (SELECT * FROM t LEFT JOIN t1 ON t.entity_id = t1.entity_id AND t.end_date = t1.end_date AND t.price_date = t1.price_date);
- }
- /*
- * Lower Partial Moment
- * NOTE: risk free rate is used as Minimal Accepted Rate (MAR) here
- *
- */
- def cal_LPM(ret, risk_free) {
-
- t = SELECT *, count(entity_id) AS cnt FROM ret WHERE ret > -1 CONTEXT BY entity_id;
- lpm = SELECT t.entity_id, max(t.end_date) AS end_date,
- (sum (rfr.ret - t.ret) \ (t.cnt[0])).pow(1\1) AS lpm1,
- (sum2(rfr.ret - t.ret) \ (t.cnt[0])).pow(1\2) AS lpm2,
- (sum3(rfr.ret - t.ret) \ (t.cnt[0])).pow(1\3) AS lpm3
- FROM t
- INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
- WHERE t.ret < rfr.ret
- GROUP BY t.entity_id;
- return lpm;
- }
- /*
- * Downside Devision, Omega Ratio, Sortino Ratio, Kappa Ratio
- *
- * TODO: Java version of Downside Deviation (LPM2) uses cnt-1 as denominator to calculate mean excess return, which might be wrong
- * Java version of Omega could be wrong because Java uses annualized returns and cnt-1
- * Java'version of Kappa could be very wrong
- *
- */
- def cal_omega_sortino_kappa(ret, risk_free) {
- lpm = cal_LPM(ret, risk_free);
- tb = SELECT t.entity_id,
- l.lpm2[0] AS ds_dev,
- (t.ret - rfr.ret ).mean() \ l.lpm1[0] + 1 AS omega,
- (t.ret - rfr.ret ).mean() \ l.lpm2[0] AS sortino,
- (t.ret - rfr.ret ).mean() \ l.lpm3[0] AS kappa
- FROM ret t
- INNER JOIN lpm l ON t.entity_id = l.entity_id
- INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
- GROUP BY t.entity_id;
- return tb;
- }
- /*
- * Alpha & Beta
- * NOTE: alpha of Java version is noncompliant-GIPS annulized number
- */
- def cal_alpha_beta(ret, benchmarks, bmk_ret, risk_free) {
- t = SELECT t.entity_id, t.end_date, t.ret, bm.benchmark_id, bmk.ret AS ret_bmk
- FROM ret t
- INNER JOIN benchmarks bm ON t.entity_id = bm.entity_id
- INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND bm.benchmark_id = bmk.benchmark_id
- WHERE t.ret > -1
- AND bmk.ret > -1;
- beta = SELECT entity_id, benchmark_id, ret.beta(ret_bmk) AS beta FROM t GROUP BY entity_id, benchmark_id;
- alpha = SELECT t.entity_id, t.benchmark_id, beta.beta[0] AS beta, (t.ret - rfr.ret).mean() - beta.beta[0] * (t.ret_bmk - rfr.ret).mean() AS alpha
- FROM t
- INNER JOIN beta beta ON t.entity_id = beta.entity_id AND t.benchmark_id = beta.benchmark_id
- INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
- GROUP BY t.entity_id, t.benchmark_id;
- return alpha;
- }
- /*
- * Winning Ratio, Tracking Error, Information Ratio
- * TODO: Information Ratio is way off!
- * Not sure how to describe a giant number("inf"), for now 999 is used
- */
- def cal_benchmark_tracking(ret, benchmarks, bmk_ret) {
- t0 = SELECT t.entity_id, t.end_date, t.price_date,
- t.ret, bmk.ret AS ret_bmk, count(t.entity_id) AS cnt, (t.ret - bmk.ret) AS exc_ret, bm.benchmark_id
- FROM ret t
- INNER JOIN benchmarks bm ON t.entity_id = bm.entity_id
- INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND bm.benchmark_id = bmk.benchmark_id
- WHERE t.ret > -1
- AND bmk.ret > -1
- CONTEXT BY t.entity_id, bm.benchmark_id;
- t = SELECT entity_id, end_date.max() AS end_date, price_date.max() AS price_date, price_date.min() AS min_date, benchmark_id,
- exc_ret.bucketCount(0:999, 1) \ cnt[0] AS winrate,
- exc_ret.std() AS track_error,
- iif(exc_ret.std() == 0, null, exc_ret.mean() / exc_ret.std()) AS info
- FROM t0 GROUP BY entity_id, benchmark_id;
- return t;
- }
- /*
- * Upside/Down Capture Return/Ratio
- *
- */
- def cal_capture_ratio(ret, benchmarks, bmk_ret) {
- t1 = SELECT t.entity_id, (1+t.ret).prod() AS upside_ret, (1+bmk.ret).prod() AS bmk_upside_ret, bmk.end_date.count() AS bmk_upside_cnt, bm.benchmark_id
- FROM ret t
- INNER JOIN benchmarks bm ON t.entity_id = bm.entity_id
- INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND bm.benchmark_id = bmk.benchmark_id
- WHERE t.ret > -1
- AND bmk.ret >= 0
- GROUP BY t.entity_id, bm.benchmark_id;
- t2 = SELECT t.entity_id, (1+t.ret).prod() AS downside_ret, (1+bmk.ret).prod() AS bmk_downside_ret, bmk.end_date.count() AS bmk_downside_cnt, bm.benchmark_id
- FROM ret t
- INNER JOIN benchmarks bm ON t.entity_id = bm.entity_id
- INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND bm.benchmark_id = bmk.benchmark_id
- WHERE t.ret > -1
- AND bmk.ret < 0
- GROUP BY t.entity_id, bm.benchmark_id;
- t = SELECT iif(isNull(t1.entity_id), t2.entity_id, t1.entity_id) AS entity_id,
- iif(isNull(t1.benchmark_id), t2.benchmark_id, t1.benchmark_id) AS benchmark_id,
- t1.upside_ret.pow(1 \ t1.bmk_upside_cnt)-1 AS upside_capture_ret,
- (t1.upside_ret.pow(1 \ t1.bmk_upside_cnt)-1)/(t1.bmk_upside_ret.pow(1 \ t1.bmk_upside_cnt)-1) AS upside_capture_ratio,
- t2.downside_ret.pow(1 \ t2.bmk_downside_cnt)-1 AS downside_capture_ret,
- (t2.downside_ret.pow(1 \ t2.bmk_downside_cnt)-1)/(t2.bmk_downside_ret.pow(1 \ t2.bmk_downside_cnt)-1) AS downside_capture_ratio
- FROM t1 FULL JOIN t2 ON t1.entity_id = t2.entity_id AND t1.benchmark_id = t2.benchmark_id;
- return t;
- }
- /*
- * Sharpe Ratio
- * NOTE: Java version is noncompliant-GIPS annulized number
- */
- def cal_sharpe(ret, std_dev, risk_free) {
- sharpe = SELECT t.entity_id, (t.ret - rfr.ret).mean() / std.std_dev[0] AS sharpe
- FROM ret t
- INNER JOIN std_dev std ON t.entity_id = std.entity_id
- INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
- WHERE std.std_dev[0] <> 0
- GROUP BY t.entity_id;
- return sharpe;
- }
- /*
- * Treynor Ratio
- */
- def cal_treynor(ret, risk_free, beta) {
- t = SELECT *, count(entity_id) AS cnt
- FROM ret t
- INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
- WHERE t.ret > -1
- AND rfr.ret > -1
- CONTEXT BY t.entity_id;
-
- treynor = SELECT t.entity_id, beta.benchmark_id,
- ((1 + t.ret).prod().pow(12\iif(t.cnt[0]<12, 12, t.cnt[0])) - (1 + t.rfr_ret).prod().pow(12\iif(t.cnt[0]<12, 12, t.cnt[0]))) / beta.beta[0] AS treynor
- FROM t
- INNER JOIN beta AS beta ON t.entity_id = beta.entity_id
- GROUP BY t.entity_id, beta.benchmark_id;
- return treynor;
- }
- /*
- * Jensen's Alpha
- * TODO: the result is slightly off
- */
- def cal_jensen(ret, bmk_ret, risk_free, beta) {
- jensen = SELECT t.entity_id, t.ret.mean() - rfr.ret.mean() - beta.beta[0] * (bmk.ret.mean() - rfr.ret.mean()) AS jensen, beta.benchmark_id
- FROM ret t
- INNER JOIN beta beta ON t.entity_id = beta.entity_id
- INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND beta.benchmark_id = bmk.benchmark_id
- INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
- GROUP BY t.entity_id, beta.benchmark_id;
-
- return jensen;
- }
- /*
- * Calmar Ratio
- * TODO: the result is off
- *
- */
- def cal_calmar(ret_a){
- calmar = SELECT entity_id, trailing_ret_a \ drawdown AS calmar
- FROM ret_a;
- return calmar;
- }
- /*
- * Modigliani Modigliani Measure (M2)
- * NOTE: M2 = sharpe * std(benchmark) + risk_free_rate
- * NOTE: Java version is noncompliant-GIPS annulized number
- */
- def cal_m2(ret, benchmarks, bmk_ret, risk_free) {
- m2 = SELECT t.entity_id, (t.ret - rfr.ret).mean() / t.ret.std() * bmk.ret.std() + rfr.ret.mean() AS m2, bm.benchmark_id
- FROM ret t
- INNER JOIN benchmarks bm ON t.entity_id = bm.entity_id
- INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND bm.benchmark_id = bmk.benchmark_id
- INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
- GROUP BY t.entity_id, bm.benchmark_id;
- return m2;
- }
- /*
- * Morningstar Return, Morningstar Risk-Adjusted Return
- *
- * TODO: Tax and loads are NOT taken care of
- * TODO: Assume Chinese methodology using 3, 5, 10 as number of traling years
- *
- * NOTE: Morningstar methodology requires monthly return for calculation, so that "12" is hard-coded here
- *
- *
- */
- def cal_ms_return(ret, risk_free) {
- r = SELECT t.entity_id, t.end_date.max() AS end_date, t.price_date.max() AS price_date, t.price_date.min() AS min_date,
- ((1 + t.ret)\(1 + rfr.ret)).prod().pow(12\(t.end_date.max() - t.end_date.min()))-1 AS ms_ret_a,
- (1 + t.ret).pow(-2).mean().pow(-12/2)-1 AS ms_rar_a
- FROM ret t
- INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
- GROUP BY t.entity_id;
- return r;
- }
- /*
- * Calculation for monthly indicators which need benchmark
- * @param ret <TABLE>: 收益表,NEED COLUMNS entity_id, price_dat, end_date, nav
- * @param benchmarks <TABLE>: entity-benchmark mapping table
- * @param index_ret <TABLE>: historical benchmark return table, NEED COLUMNS fund_id, end_date, ret
- * @param risk_free <TABLE>: historical risk free rate table, NEED COLUMNS fund_id, end_date, ret
- *
- * @return: indicators table
- *
- *
- * Create 20240904 模仿Java & python代码在Dolphin中实现,具体计算逻辑可能会有不同 Joey
- * TODO: some datapoints require more data, we need a way to disable calculation for them
- *
- */
- def cal_indicators_with_benchmark(mutable ret, benchmarks, index_ret, risk_free) {
- // sorting for correct first() and last() value
- ret.sortBy!(['entity_id', 'price_date'], [1, 1]);
- // alpha, beta
- alpha_beta = cal_alpha_beta(ret, benchmarks, index_ret, risk_free);
- // 胜率、跟踪误差、信息比率
- bmk_tracking = cal_benchmark_tracking(ret, benchmarks, index_ret);
- // 特雷诺
- treynor = cal_treynor(ret, risk_free, alpha_beta);
- // 詹森指数
- jensen = cal_jensen(ret, index_ret, risk_free, alpha_beta);
- // M2
- m2 = cal_m2(ret, benchmarks, index_ret, risk_free);
- // 上下行捕获率、收益
- capture_r = cal_capture_ratio(ret, benchmarks, index_ret);
- r = SELECT * FROM bmk_tracking a1
- LEFT JOIN alpha_beta ON a1.entity_id = alpha_beta.entity_id AND a1.benchmark_id = alpha_beta.benchmark_id
- LEFT JOIN treynor ON a1.entity_id = treynor.entity_id AND a1.benchmark_id = treynor.benchmark_id
- LEFT JOIN jensen ON a1.entity_id = jensen.entity_id AND a1.benchmark_id = jensen.benchmark_id
- LEFT JOIN m2 ON a1.entity_id = m2.entity_id AND a1.benchmark_id = m2.benchmark_id
- LEFT JOIN capture_r ON a1.entity_id = capture_r.entity_id AND a1.benchmark_id = capture_r.benchmark_id;
- // 年化各数据点
- // GIPS RULE: NO annulization for data less than 1 year
- plainAnnu = get_annulization_multiple('m');
- sqrtAnnu = sqrt(get_annulization_multiple('m'));
- r.addColumn(['alpha_a', 'jensen_a', 'track_error_a', 'info_a', 'm2_a'],
- [DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE]);
- UPDATE r
- SET alpha_a = alpha * iif(price_date.month() - min_date.month() >= 11, plainAnnu, 1),
- jensen_a = jensen * iif(price_date.month() - min_date.month() >= 11, plainAnnu, 1),
- track_error_a = track_error * iif(price_date.month() - min_date.month() >= 11, sqrtAnnu, 1),
- info_a = info * iif(price_date.month() - min_date.month() >= 11, sqrtAnnu, 1),
- m2_a = m2 * iif(price_date.month() - min_date.month() >= 11, plainAnnu, 1);
-
- return r.dropColumns!(['end_date', 'price_date', 'min_date']);
- }
- /*
- * Monthly standard indicator calculation
- * @param ret <TABLE>: 收益表,NEED COLUMNS entity_id, price_dat, end_date, nav
- * @param benchmarks <TABLE>: entity-benchmark mapping table
- * @param benchmark_ret <TABLE>: historical benchmark return table, NEED COLUMNS fund_id, end_date, ret
- * @param risk_free <TABLE>: historical risk free rate table, NEED COLUMNS fund_id, end_date, ret
- *
- * @return: indicators table
- *
- *
- * Create 20240904 模仿Java & python代码在Dolphin中实现,具体计算逻辑可能会有不同 Joey
- * TODO: some datapoints require more data, we need a way to disable calculation for them
- *
- */
- def cal_indicators(mutable ret, benchmarks, benchmark_ret, risk_free) {
- // sorting for correct first() and last() value
- ret.sortBy!(['entity_id', 'price_date'], [1, 1]);
- // 收益、标准差、偏度、峰度、最大回撤、VaR, CVaR
- rtn = cal_basic_performance(ret, 'm');
- // 夏普
- sharpe = cal_sharpe(ret, rtn, risk_free);
- // 卡玛比率
- calmar = cal_calmar(rtn);
- // 整合后的下行标准差、欧米伽、索提诺、卡帕
- lpms = cal_omega_sortino_kappa(ret, risk_free);
- // 需要基准的指标们
- indicator_with_benchmark = cal_indicators_with_benchmark(ret, benchmarks, benchmark_ret, risk_free);
- r = SELECT * FROM rtn a1
- LEFT JOIN sharpe ON a1.entity_id = sharpe.entity_id
- LEFT JOIN calmar ON a1.entity_id = calmar.entity_id
- LEFT JOIN lpms ON a1.entity_id = lpms.entity_id
- LEFT JOIN indicator_with_benchmark ON a1.entity_id = indicator_with_benchmark.entity_id;
- // 年化各数据点
- // GIPS RULE: NO annulization for data less than 1 year
- plainAnnu = get_annulization_multiple('m');
- sqrtAnnu = sqrt(get_annulization_multiple('m'));
- r.addColumn(['std_dev_a', 'ds_dev_a', 'sharpe_a', 'sortino_a'],
- [DOUBLE, DOUBLE, DOUBLE, DOUBLE]);
- UPDATE r
- SET std_dev_a = std_dev * iif(price_date.month() - min_date.month() >= 11, sqrtAnnu, 1),
- ds_dev_a = ds_dev * iif(price_date.month() - min_date.month() >= 11, sqrtAnnu, 1),
- sharpe_a = sharpe * iif(price_date.month() - min_date.month() >= 11, sqrtAnnu, 1),
- sortino_a = sortino * iif(price_date.month() - min_date.month() >= 11, sqrtAnnu, 1);
-
- return r;
- }
- /*
- * Monthly BFI indicator calculation
- * @param ret <TABLE>: 收益表,NEED COLUMNS entity_id, price_dat, end_date, nav
- * @param benchmarks <TABLE>: entity-benchmark mapping table
- * @param benchmark_ret <TABLE>: historical benchmark return table, NEED COLUMNS fund_id, end_date, ret
- * @param risk_free <TABLE>: historical risk free rate table, NEED COLUMNS fund_id, end_date, ret
- *
- * @return: BFI indicators table
- *
- *
- * Create 20240914 Joey
- *
- */
- def cal_bfi_indicators(mutable ret, benchmarks, benchmark_ret, risk_free) {
- // 需要基准的指标们
- r = cal_indicators_with_benchmark(ret, benchmarks, benchmark_ret, risk_free);
-
- return r;
- }
- /*
- * Monthly Morningstar indicator calculation
- *
- * @param ret <TABLE>: 收益表,NEED COLUMNS entity_id, price_dat, end_date, nav
- * @param benchmarks <USELESS>:
- * @param benchmark_ret <USELESS>:
- * @param risk_free <TABLE>: historical risk free rate table, NEED COLUMNS fund_id, end_date, ret
- *
- */
- def cal_ms_indicators(mutable ret, benchmarks, benchmark_ret, risk_free) {
- r = cal_ms_return(ret, risk_free);
- return r;
- }
- /*
- * Calculate trailing 6m, ytd, 1y, 2y, 3y, 4y, 5y, 10y and since inception datapoints
- *
- * @param: func <FUNCTION>: the calculation function
- * @param: entity_info <TABLE>: basic information of entity, NEED COLUMNS entity_id, inception_date
- * @param benchmarks <TABLE>: entity-benchmark mapping table
- * @param: ret <TABLE>: 收益表,NEED COLUMNS entity_id, price_dat, end_date, nav
- * @param: end_day <DATE>: 计算截止日期
- * @param bmk_ret <TABLE>: historical benchmark return table, NEED COLUMNS fund_id, end_date, ret
- * @param risk_free <TABLE>: historical risk free rate table, NEED COLUMNS fund_id, end_date, ret
- * @param periods <BOOL VECTOR>: 是否计算的区间向量,分别对应 incep, ytd, 6m, 1y, 2y, 3y, 4y, 5y, 10y
- *
- * Example: cal_trailing(
- *
- */
- def cal_trailing(func, entity_info, benchmarks, mutable tb_ret, end_day, bmk_ret, risk_free_rate, periods) {
- r_incep = null;
- r_ytd = null;
- r_6m = null;
- r_1y = null;
- r_2y = null;
- r_3y = null;
- r_4y = null;
- r_5y = null;
- r_10y = null;
- // since inception
- if(tb_ret.size() > 0 && periods[0] == 1) {
- r_incep = func(tb_ret, benchmarks, bmk_ret, risk_free_rate);
- }
- // ytd
- tb_ret_ytd = SELECT * FROM tb_ret WHERE end_date >= end_day.yearBegin().month();
- if(tb_ret_ytd.size() > 0 && periods[1] == 1) {
- r_ytd = func(tb_ret_ytd, benchmarks, bmk_ret, risk_free_rate);
- }
- // trailing 6m
- tb_ret_6m = SELECT * FROM tb_ret r INNER JOIN entity_info ei ON r.entity_id = ei.entity_id
- WHERE r.end_date > end_day.month()-6 AND (end_day.month() - ei.inception_date.month()) >= 6;
- if(tb_ret_6m.size() > 0 && periods[2] == 1) {
- r_6m = func(tb_ret_6m, benchmarks, bmk_ret, risk_free_rate);
- }
-
- // trailing 1y
- tb_ret_1y = SELECT * FROM tb_ret r INNER JOIN entity_info ei ON r.entity_id = ei.entity_id
- WHERE r.end_date > end_day.month()-12 AND (end_day.month() - ei.inception_date.month()) >= 12;
- if(tb_ret_1y.size() > 0 && periods[3] == 1) {
- r_1y = func(tb_ret_1y, benchmarks, bmk_ret, risk_free_rate);
- }
-
- // trailing 2y
- tb_ret_2y = SELECT * FROM tb_ret r INNER JOIN entity_info ei ON r.entity_id = ei.entity_id
- WHERE r.end_date > end_day.month()-24 AND (end_day.month() - ei.inception_date.month()) >= 24;
- if(tb_ret_2y.size() > 0 && periods[4] == 1) {
- r_2y = func(tb_ret_2y, benchmarks, bmk_ret, risk_free_rate);
- }
-
- // trailing 3y
- tb_ret_3y = SELECT * FROM tb_ret r INNER JOIN entity_info ei ON r.entity_id = ei.entity_id
- WHERE r.end_date > end_day.month()-36 AND (end_day.month() - ei.inception_date.month()) >= 36;
- if(tb_ret_3y.size() > 0 && periods[5] == 1) {
- r_3y = func(tb_ret_3y, benchmarks, bmk_ret, risk_free_rate);
- }
- // trailing 4y
- tb_ret_4y = SELECT * FROM tb_ret r INNER JOIN entity_info ei ON r.entity_id = ei.entity_id
- WHERE r.end_date > end_day.month()-48 AND (end_day.month() - ei.inception_date.month()) >= 48;
- if(tb_ret_4y.size() > 0 && periods[6] == 1) {
- r_4y = func(tb_ret_4y, benchmarks, bmk_ret, risk_free_rate);
- }
-
- // trailing 5y
- tb_ret_5y = SELECT * FROM tb_ret r INNER JOIN entity_info ei ON r.entity_id = ei.entity_id
- WHERE r.end_date > end_day.month()-60 AND (end_day.month() - ei.inception_date.month()) >= 60;
- if(tb_ret_5y.size() > 0 && periods[7] == 1) {
- r_5y = func(tb_ret_5y, benchmarks, bmk_ret, risk_free_rate);
- }
- // trailing 10y
- tb_ret_10y = SELECT * FROM tb_ret r INNER JOIN entity_info ei ON r.entity_id = ei.entity_id
- WHERE r.end_date > end_day.month()-120 AND (end_day.month() - ei.inception_date.month()) >= 120;
- if(tb_ret_10y.size() > 0 && periods[8] == 1) {
- r_10y = func(tb_ret_10y, benchmarks, bmk_ret, risk_free_rate);
- }
- return r_incep, r_ytd, r_6m, r_1y, r_2y, r_3y, r_4y, r_5y, r_10y;
- }
- /*
- * Calculate trailing 6m, ytd, 1y, 2y, 3y, 4y, 5y, 10y and since inception standard indicators
- *
- * @param: entity_info <TABLE>: basic information of entity, NEED COLUMNS entity_id, inception_date
- * @param benchmarks <TABLE>: entity-benchmark mapping table
- * @param: ret <TABLE>: 收益表,NEED COLUMNS entity_id, price_dat, end_date, nav
- * @param: end_day <DATE>: 计算截止日期
- * @param bmk_ret <TABLE>: historical benchmark return table, NEED COLUMNS fund_id, end_date, ret
- * @param risk_free <TABLE>: historical risk free rate table, NEED COLUMNS fund_id, end_date, ret
- *
- */
- def cal_trailing_indicators(entity_info, benchmarks, mutable tb_ret, end_day, bmk_ret, risk_free_rate) {
- return cal_trailing(cal_indicators, entity_info, benchmarks, tb_ret, end_day, bmk_ret, risk_free_rate, [1,1,1,1,1,1,1,1,1]);
- }
- /*
- * Calculate trailing 6m, ytd, 1y, 2y, 3y, 4y, 5y, 10y and since inception bfi indicators
- *
- * @param: entity_info <TABLE>: basic information of entity, NEED COLUMNS entity_id, inception_date
- * @param benchmarks <TABLE>: entity-benchmark mapping table
- * @param: ret <TABLE>: 收益表,NEED COLUMNS entity_id, price_dat, end_date, nav
- * @param: end_day <DATE>: 计算截止日期
- * @param bmk_ret <TABLE>: historical benchmark return table, NEED COLUMNS fund_id, end_date, ret
- * @param risk_free <TABLE>: historical risk free rate table, NEED COLUMNS fund_id, end_date, ret
- *
- *
- */
- def cal_trailing_bfi_indicators(entity_info, benchmarks, mutable tb_ret, end_day, bmk_ret, risk_free_rate) {
- return cal_trailing(cal_bfi_indicators, entity_info, benchmarks, tb_ret, end_day, bmk_ret, risk_free_rate, [1,1,1,1,1,1,1,1,1]);
- }
- /*
- * Calculate trailing 3y, 5y, 10y Morningstar Return, Risk-Adjested Return and Risk
- *
- */
- def cal_trailing_ms_indicators(entity_info, mutable tb_ret, end_day, risk_free_rate) {
-
- return cal_trailing(cal_ms_indicators, entity_info, , tb_ret, end_day, , risk_free_rate, periods=[0,0,0,0,0,1,0,1,1]);
- }
- /*
- * Calculate fund indicators for one date
- *
- * @param entity_type <STRING>: MF, HF
- * @param fund_ids <STRING>: 逗号和单引号分隔的fund_id
- * @param end_day <DATE>: 要计算的日期
- * @param isFromNav <BOOL>: 用净值实时计算还是从表中取月收益
- * @param isFromSQL <BOOL>: TODO: 从MySQL还是本地DolphinDB取净值/收益数据
- *
- * @return <DICT TABLE>: ['PBI-INCEP', 'PBI-YTD', 'PBI-6M', 'PBI-1Y', 'PBI-2Y', 'PBI-3Y', 'PBI-4Y', 'PBI-5Y', 'PBI-10Y', 'MS-3Y', 'MS-5Y', 'MS-10Y']
- *
- * TODO: primary_benchmark_id seems not be used as benchmark, when it is FA00000VNB
- *
- * Example: cal_fund_indicators('HF', "'HF000004KN','HF000103EU','HF00018WXG'", 2024.06.28, true);
- *
- */
- def cal_fund_indicators(entity_type, fund_ids, end_day, isFromNav) {
- very_old_date = 1990.01.01;
- fund_info = get_fund_info(fund_ids);
-
- if(fund_info.isVoid() || fund_info.size() == 0) { return null };
-
- fund_info.rename!('fund_id', 'entity_id');
- if(isFromNav == true) {
- // 从净值开始计算收益
- tb_ret = SELECT * FROM cal_fund_monthly_returns(entity_type, fund_ids, true) WHERE price_date <= end_day;
- tb_ret.rename!(['fund_id', 'cumulative_nav'], ['entity_id', 'nav']);
- } else {
- // 从fund_performance表里读月收益
- tb_ret = get_monthly_ret('FD', fund_ids, very_old_date, end_day, true);
- tb_ret.rename!(['fund_id'], ['entity_id']);
- }
- // 取基金和基准的对照表
- primary_benchmark = SELECT entity_id, iif(benchmark_id.isNull(), 'IN00000008', benchmark_id) AS benchmark_id FROM fund_info;
- // 取所有出现的基准月收益
- bmk_ret = get_benchmark_return(primary_benchmark, end_day);
- risk_free_rate = SELECT fund_id, temporalParse(end_date, 'yyyy-MM') AS end_date, ret FROM get_risk_free_rate(very_old_date, end_day);
- // 标准的指标
- t0 = cal_trailing_indicators(fund_info, primary_benchmark, tb_ret, end_day, bmk_ret, risk_free_rate);
- // Morningstar 指标
- t1 = cal_trailing_ms_indicators(fund_info, tb_ret, end_day, risk_free_rate);
- // PBI stands for "Primary Benchmark Index", MS stands for "MorningStar"
- v_table_name = ['PBI-INCEP', 'PBI-YTD', 'PBI-6M', 'PBI-1Y', 'PBI-2Y', 'PBI-3Y', 'PBI-4Y', 'PBI-5Y', 'PBI-10Y', 'MS-3Y', 'MS-5Y', 'MS-10Y'];
-
- return dict(v_table_name, t0 <- t1[5] <- t1[7] <- t1[8]);
- }
- /*
- * Calculate fund BFI indicators for one date
- *
- * @param entity_type <STRING>: MF, HF
- * @param fund_ids <STRING>: 逗号和单引号分隔的fund_id
- * @param end_day <DATE>: 要计算的日期
- * @param isFromNav <BOOL>: 用净值实时计算还是从表中取月收益
- * @param isFromSQL <BOOL>: TODO: 从MySQL还是本地DolphinDB取净值/收益数据
- *
- * @return <DICT TABLE>: ['BFI-INCEP', 'BFI-YTD', 'BFI-6M', 'BFI-1Y', 'BFI-2Y', 'BFI-3Y', 'BFI-4Y', 'BFI-5Y', 'BFI-10Y']
- *
- * TODO: primary_benchmark_id seems not be used as benchmark, when it is FA00000VNB
- * TODO: intergrate with cal_fund_indicators
- *
- * Example: cal_fund_bfi_indicators('MF', "'MF00003PW2', 'MF00003PW1', 'MF00003PXO'", 2024.08.31, true);
- *
- */
- def cal_fund_bfi_indicators(entity_type, fund_ids, end_day, isFromNav) {
- very_old_date = 1990.01.01;
- fund_info = get_fund_info(fund_ids);
-
- if(fund_info.isVoid() || fund_info.size() == 0) { return null };
-
- fund_info.rename!('fund_id', 'entity_id');
- if(isFromNav == true) {
- // 从净值开始计算收益
- tb_ret = SELECT * FROM cal_fund_monthly_returns(entity_type, fund_ids, true) WHERE price_date <= end_day;
- tb_ret.rename!(['fund_id', 'cumulative_nav'], ['entity_id', 'nav']);
- } else {
- // 从fund_performance表里读月收益
- tb_ret = get_monthly_ret('FD', fund_ids, very_old_date, end_day, true);
- tb_ret.rename!(['fund_id'], ['entity_id']);
- }
- // 取基金和基准的对照表
- bfi_benchmark = SELECT fund_id AS entity_id, factor_id AS benchmark_id FROM get_fund_bfi_factors(fund_ids, end_day.temporalFormat('yyyy-MM'));
- if(bfi_benchmark.isVoid() || bfi_benchmark.size() == 0) { return null; }
- bmk_ret = get_benchmark_return(bfi_benchmark, end_day);
- risk_free_rate = SELECT fund_id, temporalParse(end_date, 'yyyy-MM') AS end_date, ret FROM get_risk_free_rate(very_old_date, end_day);
- t0 = cal_trailing_bfi_indicators(fund_info, bfi_benchmark, tb_ret, end_day, bmk_ret, risk_free_rate);
- // BFI stands for "Best Fit Index"
- v_table_name = ['BFI-INCEP', 'BFI-YTD', 'BFI-6M', 'BFI-1Y', 'BFI-2Y', 'BFI-3Y', 'BFI-4Y', 'BFI-5Y', 'BFI-10Y'];
-
- return dict(v_table_name, t0);
- }
- /*
- * Calculate portfolio indicators for one date
- *
- * @param portfolio_ids <STRING>: comma-delimited portfolio ids
- * @param end_day <DATE>: the date
- * @param cal_method <INT>: calculate based on cumulative nav (1) or nav (2)
- * @param isFromNav <BOOL>: calculate returns from NAV on-the-fly (true) or get from monthly return table (false)
- *
- * Example: cal_portfolio_indicators('166002,166114', 2024.08.31, 1, true);
- *
- */
- def cal_portfolio_indicators(portfolio_ids, end_day, cal_method, isFromNav) {
- very_old_date = 1990.01.01;
- portfolio_info = get_portfolio_info(portfolio_ids);
- if(portfolio_info.isVoid() || portfolio_info.size() == 0) { return null };
-
- portfolio_info.rename!('portfolio_id', 'entity_id');
- if(isFromNav == true) {
- // 从净值开始计算收益
- tb_raw_ret = SELECT * FROM cal_portfolio_nav(portfolio_ids, very_old_date, cal_method) WHERE price_date <= end_day;
-
- // funky thing is you can't use "AS" for the grouping columns?
- tb_ret = SELECT portfolio_id, price_date.month(), price_date.last() AS price_date, (1+ret).prod()-1 AS ret, nav.last() AS nav
- FROM tb_raw_ret
- WHERE price_date <= end_day
- GROUP BY portfolio_id, price_date.month();
- tb_ret.rename!(['portfolio_id', 'month_price_date'], ['entity_id', 'end_date']);
- } else {
- // 从pf_portfolio_performance表里读月收益
- tb_ret = get_monthly_ret('PF', portfolio_ids, very_old_date, end_day, true);
- tb_ret.rename!(['portfolio_id'], ['entity_id']);
- }
- // 沪深300做基准,同SQL保持一致
- primary_benchmark = SELECT entity_id, 'IN00000008' AS benchmark_id FROM portfolio_info;
- // 取所有出现的基准月收益
- bmk_ret = get_benchmark_return(primary_benchmark, end_day);
- risk_free_rate = SELECT fund_id, temporalParse(end_date, 'yyyy-MM') AS end_date, ret FROM get_risk_free_rate(very_old_date, end_day);
- t0 = cal_trailing_indicators(portfolio_info, primary_benchmark, tb_ret, end_day, bmk_ret, risk_free_rate);
- v_table_name = ['PBI-INCEP', 'PBI-YTD', 'PBI-6M', 'PBI-1Y', 'PBI-2Y', 'PBI-3Y', 'PBI-4Y', 'PBI-5Y', 'PBI-10Y'];
-
- return dict(v_table_name, t0);
- }
- /*
- * Calculate portfolio bfi indicators for one date
- *
- * @param portfolio_ids <STRING>: comma-delimited portfolio ids
- * @param end_day <DATE>: the date
- * @param cal_method <INT>: calculate based on cumulative nav (1) or nav (2)
- * @param isFromNav <BOOL>: calculate returns from NAV on-the-fly (true) or get from monthly return table (false)
- *
- * TODO: intergrate with cal_portfolio_indicators
- *
- * Example: cal_portfolio_bfi_indicators('166002,166114', 2024.08.31, 1, true);
- *
- */
- def cal_portfolio_bfi_indicators(portfolio_ids, end_day, cal_method, isFromNav) {
- very_old_date = 1990.01.01;
- portfolio_info = get_portfolio_info(portfolio_ids);
- if(portfolio_info.isVoid() || portfolio_info.size() == 0) { return null };
-
- portfolio_info.rename!('portfolio_id', 'entity_id');
- if(isFromNav == true) {
- // 从净值开始计算收益
- tb_raw_ret = SELECT * FROM cal_portfolio_nav(portfolio_ids, very_old_date, cal_method) WHERE price_date <= end_day;
-
- // funky thing is you can't use "AS" for the grouping columns?
- tb_ret = SELECT portfolio_id, price_date.month(), price_date.last() AS price_date, (1+ret).prod()-1 AS ret, nav.last() AS nav
- FROM tb_raw_ret
- WHERE price_date <= end_day
- GROUP BY portfolio_id, price_date.month();
- tb_ret.rename!(['portfolio_id', 'month_price_date'], ['entity_id', 'end_date']);
- } else {
- // 从pf_portfolio_performance表里读月收益
- tb_ret = get_monthly_ret('PF', portfolio_ids, very_old_date, end_day, true);
- tb_ret.rename!(['portfolio_id'], ['entity_id']);
- }
- // 取组合和基准的对照表
- bfi_benchmark = SELECT portfolio_id AS entity_id, factor_id AS benchmark_id FROM get_portfolio_bfi_factors(portfolio_ids, end_day.temporalFormat('yyyy-MM'));
- if(bfi_benchmark.isVoid() || bfi_benchmark.size() == 0) { return null; }
- bmk_ret = get_benchmark_return(bfi_benchmark, end_day);
- risk_free_rate = SELECT fund_id, temporalParse(end_date, 'yyyy-MM') AS end_date, ret FROM get_risk_free_rate(very_old_date, end_day);
- t0 = cal_trailing_bfi_indicators(portfolio_info, bfi_benchmark, tb_ret, end_day, bmk_ret, risk_free_rate);
- v_table_name = ['PBI-INCEP', 'PBI-YTD', 'PBI-6M', 'PBI-1Y', 'PBI-2Y', 'PBI-3Y', 'PBI-4Y', 'PBI-5Y', 'PBI-10Y'];
-
- return dict(v_table_name, t0);
- }
|