rankingCalculator.dos 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572
  1. module fundit::rankingCalculator
  2. use fundit::sqlUtilities
  3. use fundit::dataPuller
  4. use fundit::dataSaver
  5. def cal_ranking() {
  6. }
  7. /*
  8. * 计算收益率排名
  9. *
  10. *
  11. */
  12. def cal_ret_ranking(entity_type, entity_info, end_date, isFromMySQL) {
  13. table_desc = get_performance_table_description(entity_type);
  14. tb_data = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
  15. sec_id_col = table_desc.sec_id_col[0];
  16. tb_data.rename!(sec_id_col, 'entity_id');
  17. tb_strategy = get_strategy_list();
  18. tb_substrategy = get_substrategy_list();
  19. t = SELECT *
  20. FROM entity_info en
  21. INNER JOIN tb_data d ON en.entity_id = d.entity_id
  22. WHERE en.strategy IS NOT NULL
  23. AND (en.entity_id LIKE 'MF%' OR en.entity_id LIKE 'HF%')
  24. // 按照 MySQL 字段建表
  25. t_s = create_entity_indicator_ranking(false);
  26. t_s_num = create_entity_indicator_ranking_num(false);
  27. t_ss = create_entity_indicator_substrategy_ranking(false);
  28. t_ss_num = create_entity_indicator_substrategy_ranking_num(false);
  29. v_tables = [t_s, t_s_num, t_ss, t_ss_num];
  30. v_tables[0] = SELECT entity_id, end_date, strategy, 1 AS indicator_id,
  31. ret_1m AS indicator_1m, ret_1m.rank(false) AS absrank_1m, (ret_1m.rank(false, percent=true)*100).round(0) AS perrank_1m,
  32. ret_3m AS indicator_3m, ret_3m.rank(false) AS absrank_3m, (ret_3m.rank(false, percent=true)*100).round(0) AS perrank_3m,
  33. ret_6m AS indicator_6m, ret_6m.rank(false) AS absrank_6m, (ret_6m.rank(false, percent=true)*100).round(0) AS perrank_6m,
  34. ret_1y AS indicator_1y, ret_1y.rank(false) AS absrank_1y, (ret_1y.rank(false, percent=true)*100).round(0) AS perrank_1y,
  35. ret_2y AS indicator_2y, ret_2y.rank(false) AS absrank_2y, (ret_2y.rank(false, percent=true)*100).round(0) AS perrank_2y,
  36. ret_3y AS indicator_3y, ret_3y.rank(false) AS absrank_3y, (ret_3y.rank(false, percent=true)*100).round(0) AS perrank_3y,
  37. ret_5y AS indicator_5y, ret_5y.rank(false) AS absrank_5y, (ret_5y.rank(false, percent=true)*100).round(0) AS perrank_5y,
  38. ret_10y AS indicator_10y, ret_10y.rank(false) AS absrank_10y, (ret_10y.rank(false, percent=true)*100).round(0) AS perrank_10y,
  39. ret_ytd AS indicator_ytd, ret_ytd.rank(false) AS absrank_ytd, (ret_ytd.rank(false, percent=true)*100).round(0) AS perrank_ytd
  40. FROM t CONTEXT BY strategy, end_date;
  41. v_tables[1] = SELECT t.end_date, t.strategy, s.raise_type[0], 1 AS indicator_id,
  42. ret_1m.mean() AS avg_1m, ret_1m.count() AS avg_1m_cnt, ret_1m.percentile(95) AS perrank_percent_5_1m,
  43. ret_1m.percentile(90) AS perrank_percent_10_1m, ret_1m.percentile(75) AS perrank_percent_25_1m,
  44. ret_1m.percentile(50) AS perrank_percent_50_1m, ret_1m.percentile(25) AS perrank_percent_75_1m,
  45. ret_1m.percentile(10) AS perrank_percent_90_1m, ret_1m.percentile(5) AS perrank_percent_95_1m,
  46. ret_1m.max() AS best_1m, ret_1m.min() AS worst_1m,
  47. ret_3m.mean() AS avg_3m, ret_3m.count() AS avg_3m_cnt, ret_3m.percentile(95) AS perrank_percent_5_3m,
  48. ret_3m.percentile(90) AS perrank_percent_10_3m, ret_3m.percentile(75) AS perrank_percent_25_3m,
  49. ret_3m.percentile(50) AS perrank_percent_50_3m, ret_3m.percentile(25) AS perrank_percent_75_3m,
  50. ret_3m.percentile(10) AS perrank_percent_90_3m, ret_3m.percentile(5) AS perrank_percent_95_3m,
  51. ret_3m.max() AS best_3m, ret_3m.min() AS worst_3m,
  52. ret_6m.mean() AS avg_6m, ret_6m.count() AS avg_6m_cnt, ret_6m.percentile(95) AS perrank_percent_5_6m,
  53. ret_6m.percentile(90) AS perrank_percent_10_6m, ret_6m.percentile(75) AS perrank_percent_25_6m,
  54. ret_6m.percentile(50) AS perrank_percent_50_6m, ret_6m.percentile(25) AS perrank_percent_75_6m,
  55. ret_6m.percentile(10) AS perrank_percent_90_6m, ret_6m.percentile(5) AS perrank_percent_95_6m,
  56. ret_6m.max() AS best_6m, ret_6m.min() AS worst_6m,
  57. ret_1y.mean() AS avg_1y, ret_1y.count() AS avg_1y_cnt, ret_1y.percentile(95) AS perrank_percent_5_1y,
  58. ret_1y.percentile(90) AS perrank_percent_10_1y, ret_1y.percentile(75) AS perrank_percent_25_1y,
  59. ret_1y.percentile(50) AS perrank_percent_50_1y, ret_1y.percentile(25) AS perrank_percent_75_1y,
  60. ret_1y.percentile(10) AS perrank_percent_90_1y, ret_1y.percentile(5) AS perrank_percent_95_1y,
  61. ret_1y.max() AS best_1y, ret_1y.min() AS worst_1y,
  62. ret_2y.mean() AS avg_2y, ret_2y.count() AS avg_2y_cnt, ret_2y.percentile(95) AS perrank_percent_5_2y,
  63. ret_2y.percentile(90) AS perrank_percent_10_2y, ret_2y.percentile(75) AS perrank_percent_25_2y,
  64. ret_2y.percentile(50) AS perrank_percent_50_2y, ret_2y.percentile(25) AS perrank_percent_75_2y,
  65. ret_2y.percentile(10) AS perrank_percent_90_2y, ret_2y.percentile(5) AS perrank_percent_95_2y,
  66. ret_2y.max() AS best_2y, ret_2y.min() AS worst_2y,
  67. ret_3y.mean() AS avg_3y, ret_3y.count() AS avg_3y_cnt, ret_3y.percentile(95) AS perrank_percent_5_3y,
  68. ret_3y.percentile(90) AS perrank_percent_10_3y, ret_3y.percentile(75) AS perrank_percent_25_3y,
  69. ret_3y.percentile(50) AS perrank_percent_50_3y, ret_3y.percentile(25) AS perrank_percent_75_3y,
  70. ret_3y.percentile(10) AS perrank_percent_90_3y, ret_3y.percentile(5) AS perrank_percent_95_3y,
  71. ret_3y.max() AS best_3y, ret_3y.min() AS worst_3y,
  72. ret_5y.mean() AS avg_5y, ret_5y.count() AS avg_5y_cnt, ret_5y.percentile(95) AS perrank_percent_5_5y,
  73. ret_5y.percentile(90) AS perrank_percent_10_5y, ret_5y.percentile(75) AS perrank_percent_25_5y,
  74. ret_5y.percentile(50) AS perrank_percent_50_5y, ret_5y.percentile(25) AS perrank_percent_75_5y,
  75. ret_5y.percentile(10) AS perrank_percent_90_5y, ret_5y.percentile(5) AS perrank_percent_95_5y,
  76. ret_5y.max() AS best_5y, ret_5y.min() AS worst_5y,
  77. ret_10y.mean() AS avg_10y, ret_10y.count() AS avg_10y_cnt, ret_10y.percentile(95) AS perrank_percent_5_10y,
  78. ret_10y.percentile(90) AS perrank_percent_10_10y, ret_10y.percentile(75) AS perrank_percent_25_10y,
  79. ret_10y.percentile(50) AS perrank_percent_50_10y, ret_10y.percentile(25) AS perrank_percent_75_10y,
  80. ret_10y.percentile(10) AS perrank_percent_90_10y, ret_10y.percentile(5) AS perrank_percent_95_10y,
  81. ret_10y.max() AS best_10y, ret_10y.min() AS worst_10y,
  82. ret_ytd.mean() AS avg_ytd, ret_ytd.count() AS avg_ytd_cnt, ret_ytd.percentile(95) AS perrank_percent_5_ytd,
  83. ret_ytd.percentile(90) AS perrank_percent_10_ytd, ret_ytd.percentile(75) AS perrank_percent_25_ytd,
  84. ret_ytd.percentile(50) AS perrank_percent_50_ytd, ret_ytd.percentile(25) AS perrank_percent_75_ytd,
  85. ret_ytd.percentile(10) AS perrank_percent_90_ytd, ret_ytd.percentile(5) AS perrank_percent_95_ytd,
  86. ret_ytd.max() AS best_ytd, ret_ytd.min() AS worst_ytd
  87. FROM t
  88. INNER JOIN tb_strategy s ON t.strategy = s.strategy_id
  89. GROUP BY t.strategy, t.end_date;
  90. v_tables[2] = SELECT entity_id, end_date, substrategy, 1 AS indicator_id,
  91. ret_1m AS indicator_1m, ret_1m.rank(false) AS absrank_1m, (ret_1m.rank(false, percent=true)*100).round(0) AS perrank_1m,
  92. ret_3m AS indicator_3m, ret_3m.rank(false) AS absrank_3m, (ret_3m.rank(false, percent=true)*100).round(0) AS perrank_3m,
  93. ret_6m AS indicator_6m, ret_6m.rank(false) AS absrank_6m, (ret_6m.rank(false, percent=true)*100).round(0) AS perrank_6m,
  94. ret_1y AS indicator_1y, ret_1y.rank(false) AS absrank_1y, (ret_1y.rank(false, percent=true)*100).round(0) AS perrank_1y,
  95. ret_2y AS indicator_2y, ret_2y.rank(false) AS absrank_2y, (ret_2y.rank(false, percent=true)*100).round(0) AS perrank_2y,
  96. ret_3y AS indicator_3y, ret_3y.rank(false) AS absrank_3y, (ret_3y.rank(false, percent=true)*100).round(0) AS perrank_3y,
  97. ret_5y AS indicator_5y, ret_5y.rank(false) AS absrank_5y, (ret_5y.rank(false, percent=true)*100).round(0) AS perrank_5y,
  98. ret_10y AS indicator_10y, ret_10y.rank(false) AS absrank_10y, (ret_10y.rank(false, percent=true)*100).round(0) AS perrank_10y,
  99. ret_ytd AS indicator_ytd, ret_ytd.rank(false) AS absrank_ytd, (ret_ytd.rank(false, percent=true)*100).round(0) AS perrank_ytd
  100. FROM t CONTEXT BY substrategy, end_date;
  101. v_tables[3] = SELECT t.end_date, t.substrategy, s.raise_type[0], 1 AS indicator_id,
  102. ret_1m.mean() AS avg_1m, ret_1m.count() AS avg_1m_cnt, ret_1m.percentile(95) AS perrank_percent_5_1m,
  103. ret_1m.percentile(90) AS perrank_percent_10_1m, ret_1m.percentile(75) AS perrank_percent_25_1m,
  104. ret_1m.percentile(50) AS perrank_percent_50_1m, ret_1m.percentile(25) AS perrank_percent_75_1m,
  105. ret_1m.percentile(10) AS perrank_percent_90_1m, ret_1m.percentile(5) AS perrank_percent_95_1m,
  106. ret_1m.max() AS best_1m, ret_1m.min() AS worst_1m,
  107. ret_3m.mean() AS avg_3m, ret_3m.count() AS avg_3m_cnt, ret_3m.percentile(95) AS perrank_percent_5_3m,
  108. ret_3m.percentile(90) AS perrank_percent_10_3m, ret_3m.percentile(75) AS perrank_percent_25_3m,
  109. ret_3m.percentile(50) AS perrank_percent_50_3m, ret_3m.percentile(25) AS perrank_percent_75_3m,
  110. ret_3m.percentile(10) AS perrank_percent_90_3m, ret_3m.percentile(5) AS perrank_percent_95_3m,
  111. ret_3m.max() AS best_3m, ret_3m.min() AS worst_3m,
  112. ret_6m.mean() AS avg_6m, ret_6m.count() AS avg_6m_cnt, ret_6m.percentile(95) AS perrank_percent_5_6m,
  113. ret_6m.percentile(90) AS perrank_percent_10_6m, ret_6m.percentile(75) AS perrank_percent_25_6m,
  114. ret_6m.percentile(50) AS perrank_percent_50_6m, ret_6m.percentile(25) AS perrank_percent_75_6m,
  115. ret_6m.percentile(10) AS perrank_percent_90_6m, ret_6m.percentile(5) AS perrank_percent_95_6m,
  116. ret_6m.max() AS best_6m, ret_6m.min() AS worst_6m,
  117. ret_1y.mean() AS avg_1y, ret_1y.count() AS avg_1y_cnt, ret_1y.percentile(95) AS perrank_percent_5_1y,
  118. ret_1y.percentile(90) AS perrank_percent_10_1y, ret_1y.percentile(75) AS perrank_percent_25_1y,
  119. ret_1y.percentile(50) AS perrank_percent_50_1y, ret_1y.percentile(25) AS perrank_percent_75_1y,
  120. ret_1y.percentile(10) AS perrank_percent_90_1y, ret_1y.percentile(5) AS perrank_percent_95_1y,
  121. ret_1y.max() AS best_1y, ret_1y.min() AS worst_1y,
  122. ret_2y.mean() AS avg_2y, ret_2y.count() AS avg_2y_cnt, ret_2y.percentile(95) AS perrank_percent_5_2y,
  123. ret_2y.percentile(90) AS perrank_percent_10_2y, ret_2y.percentile(75) AS perrank_percent_25_2y,
  124. ret_2y.percentile(50) AS perrank_percent_50_2y, ret_2y.percentile(25) AS perrank_percent_75_2y,
  125. ret_2y.percentile(10) AS perrank_percent_90_2y, ret_2y.percentile(5) AS perrank_percent_95_2y,
  126. ret_2y.max() AS best_2y, ret_2y.min() AS worst_2y,
  127. ret_3y.mean() AS avg_3y, ret_3y.count() AS avg_3y_cnt, ret_3y.percentile(95) AS perrank_percent_5_3y,
  128. ret_3y.percentile(90) AS perrank_percent_10_3y, ret_3y.percentile(75) AS perrank_percent_25_3y,
  129. ret_3y.percentile(50) AS perrank_percent_50_3y, ret_3y.percentile(25) AS perrank_percent_75_3y,
  130. ret_3y.percentile(10) AS perrank_percent_90_3y, ret_3y.percentile(5) AS perrank_percent_95_3y,
  131. ret_3y.max() AS best_3y, ret_3y.min() AS worst_3y,
  132. ret_5y.mean() AS avg_5y, ret_5y.count() AS avg_5y_cnt, ret_5y.percentile(95) AS perrank_percent_5_5y,
  133. ret_5y.percentile(90) AS perrank_percent_10_5y, ret_5y.percentile(75) AS perrank_percent_25_5y,
  134. ret_5y.percentile(50) AS perrank_percent_50_5y, ret_5y.percentile(25) AS perrank_percent_75_5y,
  135. ret_5y.percentile(10) AS perrank_percent_90_5y, ret_5y.percentile(5) AS perrank_percent_95_5y,
  136. ret_5y.max() AS best_5y, ret_5y.min() AS worst_5y,
  137. ret_10y.mean() AS avg_10y, ret_10y.count() AS avg_10y_cnt, ret_10y.percentile(95) AS perrank_percent_5_10y,
  138. ret_10y.percentile(90) AS perrank_percent_10_10y, ret_10y.percentile(75) AS perrank_percent_25_10y,
  139. ret_10y.percentile(50) AS perrank_percent_50_10y, ret_10y.percentile(25) AS perrank_percent_75_10y,
  140. ret_10y.percentile(10) AS perrank_percent_90_10y, ret_10y.percentile(5) AS perrank_percent_95_10y,
  141. ret_10y.max() AS best_10y, ret_10y.min() AS worst_10y,
  142. ret_ytd.mean() AS avg_ytd, ret_ytd.count() AS avg_ytd_cnt, ret_ytd.percentile(95) AS perrank_percent_5_ytd,
  143. ret_ytd.percentile(90) AS perrank_percent_10_ytd, ret_ytd.percentile(75) AS perrank_percent_25_ytd,
  144. ret_ytd.percentile(50) AS perrank_percent_50_ytd, ret_ytd.percentile(25) AS perrank_percent_75_ytd,
  145. ret_ytd.percentile(10) AS perrank_percent_90_ytd, ret_ytd.percentile(5) AS perrank_percent_95_ytd,
  146. ret_ytd.max() AS best_ytd, ret_ytd.min() AS worst_ytd
  147. FROM t
  148. INNER JOIN tb_substrategy s ON t.substrategy = s.substrategy_id
  149. GROUP BY t.substrategy, t.end_date;
  150. return v_tables;
  151. }
  152. /*
  153. * 自定义百分位计算
  154. *
  155. */
  156. defg perRank(x, is_ASC) {
  157. return (100 * x.rank(ascending=is_ASC, percent=true)).round(0);
  158. }
  159. /*
  160. * 动态生成用于排序的SQL脚本
  161. *
  162. * @param indicator_name <STRING>: 指标字段名
  163. * @param indicator_id <INT>:指标ID
  164. * @param is_ASC <BOOL>: 是否排正序
  165. * @param ranking_by <STRING>: 'strategy', 'substrategy', 'factor', 'catavg'
  166. *
  167. */
  168. def gen_ranking_sql(data_table, indicator_name, indicator_id, is_ASC, ranking_by) {
  169. // 近1月和近3月排名仅对收益有效,为了满足表结构的要求,需要建立几个”假”字段,并用NULL赋值
  170. t_tmp = table(1000:0, ['indicator_id', 'indicator_1m', 'absrank_1m', 'perrank_1m',
  171. 'indicator_3m', 'absrank_3m', 'perrank_3m'],
  172. [INT, DOUBLE, INT, INT, DOUBLE, INT, INT]);
  173. INSERT INTO t_tmp VALUES (indicator_id, double(NULL), int(NULL), int(NULL), double(NULL), int(NULL), int(NULL));
  174. // 因为 parseExpr 没法将表 data_table 传入,所以用 sql()
  175. t_ranking = sql(select = (sqlCol('entity_id'), sqlCol('end_date'), sqlCol(ranking_by), sqlCol('indicator_id'),
  176. sqlCol('indicator_1m'), sqlCol('absrank_1m'), sqlCol('perrank_1m'),
  177. sqlCol('indicator_3m'), sqlCol('absrank_3m'), sqlCol('perrank_3m'),
  178. // 与 MySQL 不同,这里统一把近4年和成立以来的排名去掉
  179. sqlCol(indicator_name + '_6m',,'indicator_6m'),
  180. sqlCol(indicator_name + '_6m', rank{, is_ASC}, 'absrank_6m'),
  181. sqlCol(indicator_name + '_6m', perRank{, is_ASC}, 'perrank_6m'),
  182. sqlCol(indicator_name + '_1y',,'indicator_1y'),
  183. sqlCol(indicator_name + '_1y', rank{, is_ASC}, 'absrank_1y'),
  184. sqlCol(indicator_name + '_1y', perRank{, is_ASC}, 'perrank_1y'),
  185. sqlCol(indicator_name + '_2y',,'indicator_2y'),
  186. sqlCol(indicator_name + '_2y', rank{, is_ASC}, 'absrank_2y'),
  187. sqlCol(indicator_name + '_2y', perRank{, is_ASC}, 'perrank_2y'),
  188. sqlCol(indicator_name + '_3y',,'indicator_3y'),
  189. sqlCol(indicator_name + '_3y', rank{, is_ASC}, 'absrank_3y'),
  190. sqlCol(indicator_name + '_3y', perRank{, is_ASC}, 'perrank_3y'),
  191. sqlCol(indicator_name + '_5y',,'indicator_5y'),
  192. sqlCol(indicator_name + '_5y', rank{, is_ASC}, 'absrank_5y'),
  193. sqlCol(indicator_name + '_5y', perRank{, is_ASC}, 'perrank_5y'),
  194. sqlCol(indicator_name + '_10y',,'indicator_10y'),
  195. sqlCol(indicator_name + '_10y', rank{, is_ASC}, 'absrank_10y'),
  196. sqlCol(indicator_name + '_10y', perRank{, is_ASC}, 'perrank_10y'),
  197. sqlCol(indicator_name + '_ytd',,'indicator_ytd'),
  198. sqlCol(indicator_name + '_ytd', rank{, is_ASC}, 'absrank_ytd'),
  199. sqlCol(indicator_name + '_ytd', perRank{, is_ASC}, 'perrank_ytd')
  200. ),
  201. from = cj(data_table, t_tmp),
  202. where = <_$ranking_by IS NOT NULL>,
  203. groupBy = (sqlCol(ranking_by), sqlCol('end_date')),
  204. groupFlag = 0 ).eval(); // context by
  205. // 近1月和近3月排名仅对收益有效,为了满足表结构的要求,需要建立几个”假”字段,并用NULL赋值
  206. t_tmp = table(1000:0, ['indicator_id', 'avg_1m', 'avg_1m_cnt', 'perrank_percent_5_1m', 'perrank_percent_10_1m', 'perrank_percent_25_1m',
  207. 'perrank_percent_50_1m', 'perrank_percent_75_1m', 'perrank_percent_90_1m', 'perrank_percent_95_1m', 'best_1m', 'worst_1m',
  208. 'avg_3m', 'avg_3m_cnt', 'perrank_percent_5_3m', 'perrank_percent_10_3m', 'perrank_percent_25_3m',
  209. 'perrank_percent_50_3m', 'perrank_percent_75_3m', 'perrank_percent_90_3m', 'perrank_percent_95_3m', 'best_3m', 'worst_3m'],
  210. [INT, DOUBLE, INT, DOUBLE, DOUBLE, DOUBLE,
  211. DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE,
  212. DOUBLE, INT, DOUBLE, DOUBLE, DOUBLE,
  213. DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE]);
  214. INSERT INTO t_tmp VALUES (indicator_id, double(NULL), int(NULL), double(NULL), double(NULL), double(NULL),
  215. double(NULL), double(NULL), double(NULL), double(NULL), double(NULL), double(NULL),
  216. double(NULL), int(NULL), double(NULL), double(NULL), double(NULL),
  217. double(NULL), double(NULL), double(NULL), double(NULL), double(NULL), double(NULL));
  218. t_ranking_num = sql(select = (sqlCol('end_date'), sqlCol(ranking_by), sqlCol('raise_type', mean, 'raise_type'), sqlCol('indicator_id', mean,'indicator_id'),
  219. sqlCol('avg_1m', mean, 'avg_1m'), sqlCol('avg_1m_cnt', mean, 'avg_1m_cnt'),
  220. sqlCol('perrank_percent_5_1m', mean, 'perrank_percent_5_1m'),
  221. sqlCol('perrank_percent_10_1m', mean, 'perrank_percent_10_1m'),
  222. sqlCol('perrank_percent_25_1m', mean, 'perrank_percent_25_1m'),
  223. sqlCol('perrank_percent_50_1m', mean, 'perrank_percent_50_1m'),
  224. sqlCol('perrank_percent_75_1m', mean, 'perrank_percent_75_1m'),
  225. sqlCol('perrank_percent_90_1m', mean, 'perrank_percent_90_1m'),
  226. sqlCol('perrank_percent_95_1m', mean, 'perrank_percent_95_1m'),
  227. sqlCol('best_1m', mean, 'best_1m'), sqlCol('worst_1m', mean, 'worst_1m'),
  228. sqlCol('avg_3m', mean, 'avg_3m'), sqlCol('avg_3m_cnt', mean, 'avg_3m_cnt'),
  229. sqlCol('perrank_percent_5_3m', mean, 'perrank_percent_5_3m'),
  230. sqlCol('perrank_percent_10_3m', mean, 'perrank_percent_10_3m'),
  231. sqlCol('perrank_percent_25_3m', mean, 'perrank_percent_25_3m'),
  232. sqlCol('perrank_percent_50_3m', mean, 'perrank_percent_50_3m'),
  233. sqlCol('perrank_percent_75_3m', mean, 'perrank_percent_75_3m'),
  234. sqlCol('perrank_percent_90_3m', mean, 'perrank_percent_90_3m'),
  235. sqlCol('perrank_percent_95_3m', mean, 'perrank_percent_95_3m'),
  236. sqlCol('best_3m', mean, 'best_3m'), sqlCol('worst_3m', mean, 'worst_3m'),
  237. // 与 MySQL 不同,这里统一把近4年和成立以来的排名去掉
  238. sqlCol(indicator_name + '_6m', mean, 'avg_6m'), sqlCol(indicator_name + '_6m', count, 'avg_6m_cnt'),
  239. sqlCol(indicator_name + '_6m', percentile{, iif(is_ASC, 5, 95)}, 'perrank_percent_5_6m'),
  240. sqlCol(indicator_name + '_6m', percentile{, iif(is_ASC, 10, 90)}, 'perrank_percent_10_6m'),
  241. sqlCol(indicator_name + '_6m', percentile{, iif(is_ASC, 25, 75)}, 'perrank_percent_25_6m'),
  242. sqlCol(indicator_name + '_6m', percentile{, iif(is_ASC, 50, 50)}, 'perrank_percent_50_6m'),
  243. sqlCol(indicator_name + '_6m', percentile{, iif(is_ASC, 75, 25)}, 'perrank_percent_75_6m'),
  244. sqlCol(indicator_name + '_6m', percentile{, iif(is_ASC, 90, 10)}, 'perrank_percent_90_6m'),
  245. sqlCol(indicator_name + '_6m', percentile{, iif(is_ASC, 95, 5)}, 'perrank_percent_95_6m'),
  246. sqlCol(indicator_name + '_6m', iif(is_ASC, min, max), 'best_6m'),
  247. sqlCol(indicator_name + '_6m', iif(is_ASC, max, min), 'worst_6m'),
  248. sqlCol(indicator_name + '_1y', mean, 'avg_1y'), sqlCol(indicator_name + '_1y', count, 'avg_1y_cnt'),
  249. sqlCol(indicator_name + '_1y', percentile{, iif(is_ASC, 5, 95)}, 'perrank_percent_5_1y'),
  250. sqlCol(indicator_name + '_1y', percentile{, iif(is_ASC, 10, 90)}, 'perrank_percent_10_1y'),
  251. sqlCol(indicator_name + '_1y', percentile{, iif(is_ASC, 25, 75)}, 'perrank_percent_25_1y'),
  252. sqlCol(indicator_name + '_1y', percentile{, iif(is_ASC, 50, 50)}, 'perrank_percent_50_1y'),
  253. sqlCol(indicator_name + '_1y', percentile{, iif(is_ASC, 75, 25)}, 'perrank_percent_75_1y'),
  254. sqlCol(indicator_name + '_1y', percentile{, iif(is_ASC, 90, 10)}, 'perrank_percent_90_1y'),
  255. sqlCol(indicator_name + '_1y', percentile{, iif(is_ASC, 95, 5)}, 'perrank_percent_95_1y'),
  256. sqlCol(indicator_name + '_1y', iif(is_ASC, min, max), 'best_1y'),
  257. sqlCol(indicator_name + '_1y', iif(is_ASC, max, min), 'worst_1y'),
  258. sqlCol(indicator_name + '_2y', mean, 'avg_2y'), sqlCol(indicator_name + '_2y', count, 'avg_2y_cnt'),
  259. sqlCol(indicator_name + '_2y', percentile{, iif(is_ASC, 5, 95)}, 'perrank_percent_5_2y'),
  260. sqlCol(indicator_name + '_2y', percentile{, iif(is_ASC, 10, 90)}, 'perrank_percent_10_2y'),
  261. sqlCol(indicator_name + '_2y', percentile{, iif(is_ASC, 25, 75)}, 'perrank_percent_25_2y'),
  262. sqlCol(indicator_name + '_2y', percentile{, iif(is_ASC, 50, 50)}, 'perrank_percent_50_2y'),
  263. sqlCol(indicator_name + '_2y', percentile{, iif(is_ASC, 75, 25)}, 'perrank_percent_75_2y'),
  264. sqlCol(indicator_name + '_2y', percentile{, iif(is_ASC, 90, 10)}, 'perrank_percent_90_2y'),
  265. sqlCol(indicator_name + '_2y', percentile{, iif(is_ASC, 95, 5)}, 'perrank_percent_95_2y'),
  266. sqlCol(indicator_name + '_2y', iif(is_ASC, min, max), 'best_2y'),
  267. sqlCol(indicator_name + '_2y', iif(is_ASC, max, min), 'worst_2y'),
  268. sqlCol(indicator_name + '_3y', mean, 'avg_3y'), sqlCol(indicator_name + '_3y', count, 'avg_3y_cnt'),
  269. sqlCol(indicator_name + '_3y', percentile{, iif(is_ASC, 5, 95)}, 'perrank_percent_5_3y'),
  270. sqlCol(indicator_name + '_3y', percentile{, iif(is_ASC, 10, 90)}, 'perrank_percent_10_3y'),
  271. sqlCol(indicator_name + '_3y', percentile{, iif(is_ASC, 25, 75)}, 'perrank_percent_25_3y'),
  272. sqlCol(indicator_name + '_3y', percentile{, iif(is_ASC, 50, 50)}, 'perrank_percent_50_3y'),
  273. sqlCol(indicator_name + '_3y', percentile{, iif(is_ASC, 75, 25)}, 'perrank_percent_75_3y'),
  274. sqlCol(indicator_name + '_3y', percentile{, iif(is_ASC, 90, 10)}, 'perrank_percent_90_3y'),
  275. sqlCol(indicator_name + '_3y', percentile{, iif(is_ASC, 95, 5)}, 'perrank_percent_95_3y'),
  276. sqlCol(indicator_name + '_3y', iif(is_ASC, min, max), 'best_3y'),
  277. sqlCol(indicator_name + '_3y', iif(is_ASC, max, min), 'worst_3y'),
  278. sqlCol(indicator_name + '_5y', mean, 'avg_5y'), sqlCol(indicator_name + '_5y', count, 'avg_5y_cnt'),
  279. sqlCol(indicator_name + '_5y', percentile{, iif(is_ASC, 5, 95)}, 'perrank_percent_5_5y'),
  280. sqlCol(indicator_name + '_5y', percentile{, iif(is_ASC, 10, 90)}, 'perrank_percent_10_5y'),
  281. sqlCol(indicator_name + '_5y', percentile{, iif(is_ASC, 25, 75)}, 'perrank_percent_25_5y'),
  282. sqlCol(indicator_name + '_5y', percentile{, iif(is_ASC, 50, 50)}, 'perrank_percent_50_5y'),
  283. sqlCol(indicator_name + '_5y', percentile{, iif(is_ASC, 75, 25)}, 'perrank_percent_75_5y'),
  284. sqlCol(indicator_name + '_5y', percentile{, iif(is_ASC, 90, 10)}, 'perrank_percent_90_5y'),
  285. sqlCol(indicator_name + '_5y', percentile{, iif(is_ASC, 95, 5)}, 'perrank_percent_95_5y'),
  286. sqlCol(indicator_name + '_5y', iif(is_ASC, min, max), 'best_5y'),
  287. sqlCol(indicator_name + '_5y', iif(is_ASC, max, min), 'worst_5y'),
  288. sqlCol(indicator_name + '_10y', mean, 'avg_10y'), sqlCol(indicator_name + '_10y', count, 'avg_10y_cnt'),
  289. sqlCol(indicator_name + '_10y', percentile{, iif(is_ASC, 5, 95)}, 'perrank_percent_5_10y'),
  290. sqlCol(indicator_name + '_10y', percentile{, iif(is_ASC, 10, 90)}, 'perrank_percent_10_10y'),
  291. sqlCol(indicator_name + '_10y', percentile{, iif(is_ASC, 25, 75)}, 'perrank_percent_25_10y'),
  292. sqlCol(indicator_name + '_10y', percentile{, iif(is_ASC, 50, 50)}, 'perrank_percent_50_10y'),
  293. sqlCol(indicator_name + '_10y', percentile{, iif(is_ASC, 75, 25)}, 'perrank_percent_75_10y'),
  294. sqlCol(indicator_name + '_10y', percentile{, iif(is_ASC, 90, 10)}, 'perrank_percent_90_10y'),
  295. sqlCol(indicator_name + '_10y', percentile{, iif(is_ASC, 95, 5)}, 'perrank_percent_95_10y'),
  296. sqlCol(indicator_name + '_10y', iif(is_ASC, min, max), 'best_10y'),
  297. sqlCol(indicator_name + '_10y', iif(is_ASC, max, min), 'worst_10y'),
  298. sqlCol(indicator_name + '_ytd', mean, 'avg_ytd'), sqlCol(indicator_name + '_ytd', count, 'avg_ytd_cnt'),
  299. sqlCol(indicator_name + '_ytd', percentile{, iif(is_ASC, 5, 95)}, 'perrank_percent_5_ytd'),
  300. sqlCol(indicator_name + '_ytd', percentile{, iif(is_ASC, 10, 90)}, 'perrank_percent_10_ytd'),
  301. sqlCol(indicator_name + '_ytd', percentile{, iif(is_ASC, 25, 75)}, 'perrank_percent_25_ytd'),
  302. sqlCol(indicator_name + '_ytd', percentile{, iif(is_ASC, 50, 50)}, 'perrank_percent_50_ytd'),
  303. sqlCol(indicator_name + '_ytd', percentile{, iif(is_ASC, 75, 25)}, 'perrank_percent_75_ytd'),
  304. sqlCol(indicator_name + '_ytd', percentile{, iif(is_ASC, 90, 10)}, 'perrank_percent_90_ytd'),
  305. sqlCol(indicator_name + '_ytd', percentile{, iif(is_ASC, 95, 5)}, 'perrank_percent_95_ytd'),
  306. sqlCol(indicator_name + '_ytd', iif(is_ASC, min, max), 'best_ytd'),
  307. sqlCol(indicator_name + '_ytd', iif(is_ASC, max, min), 'worst_ytd')
  308. ),
  309. from = cj(data_table, t_tmp),
  310. where = <_$ranking_by IS NOT NULL>,
  311. groupBy = (sqlCol(ranking_by), sqlCol('end_date')),
  312. groupFlag = 1).eval(); // group by
  313. return t_ranking, t_ranking_num;
  314. }
  315. /*
  316. * 运行排名SQL脚本
  317. *
  318. *
  319. */
  320. def run_ranking_sql(data_table, indicator_name, indicator_id, is_ASC, mutable v_tables) {
  321. /*
  322. entity_type = 'MF'
  323. end_date = 2024.09M
  324. isFromMySQL = true;
  325. indicator_name = 'alpha'
  326. indicator_id = 11
  327. is_ASC = false;
  328. groupby_field = 'strategy';
  329. data_table = t;
  330. v_tables = v_ranking_tables
  331. */
  332. tb_strategy_ranking = gen_ranking_sql(data_table, indicator_name, indicator_id, is_ASC, 'strategy')[0];
  333. v_tables[0].tableInsert(tb_strategy_ranking);
  334. tb_strategy_ranking_num = gen_ranking_sql(data_table, indicator_name, indicator_id, is_ASC, 'strategy')[1];
  335. v_tables[1].tableInsert(tb_strategy_ranking_num);
  336. tb_substrategy_ranking = gen_ranking_sql(data_table, indicator_name, indicator_id, is_ASC, 'substrategy')[0];
  337. v_tables[2].tableInsert(tb_substrategy_ranking);
  338. tb_substrategy_ranking_num = gen_ranking_sql(data_table, indicator_name, indicator_id, is_ASC, 'substrategy')[1];
  339. v_tables[3].tableInsert(tb_substrategy_ranking_num);
  340. }
  341. /*
  342. * 计算风险指标排名
  343. *
  344. *
  345. */
  346. def cal_risk_ranking(entity_type, entity_info, end_date, isFromMySQL) {
  347. table_desc = get_risk_stats_table_description(entity_type);
  348. tb_data = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
  349. sec_id_col = table_desc.sec_id_col[0];
  350. tb_data.rename!(sec_id_col, 'entity_id');
  351. t = SELECT *
  352. FROM entity_info en
  353. INNER JOIN tb_data d ON en.entity_id = d.entity_id
  354. WHERE en.strategy IS NOT NULL;
  355. // 按照 MySQL 字段建表
  356. t_s = create_entity_indicator_ranking(false);
  357. t_s_num = create_entity_indicator_ranking_num(false);
  358. t_ss = create_entity_indicator_substrategy_ranking(false);
  359. t_ss_num = create_entity_indicator_substrategy_ranking_num(false);
  360. v_ranking_tables = [t_s, t_s_num, t_ss, t_ss_num];
  361. // 最大回撤
  362. run_ranking_sql(t, 'maxdrawdown', 2, true, v_ranking_tables);
  363. // 峰度
  364. run_ranking_sql(t, 'kurtosis', 6, true, v_ranking_tables);
  365. // 偏度
  366. run_ranking_sql(t, 'skewness', 9, false, v_ranking_tables);
  367. // 标准差
  368. run_ranking_sql(t, 'stddev', 10, true, v_ranking_tables);
  369. // Alpha
  370. run_ranking_sql(t, 'alpha', 11, false, v_ranking_tables);
  371. // Beta
  372. run_ranking_sql(t, 'beta', 12, false, v_ranking_tables);
  373. // 下行标准差
  374. run_ranking_sql(t, 'downsidedev', 21, true, v_ranking_tables);
  375. // 月最大回撤 dolphin 未计算
  376. // run_ranking_sql(t, 'maxdrawdown_months', 50, true, v_ranking_tables);
  377. // 最大回撤修复月份数 dolphin 未计算
  378. //run_ranking_sql(t, 'maxdrawdown_recoverymonths', 52, true, v_ranking_tables);
  379. // 胜率
  380. run_ranking_sql(t, 'winrate', 59, false, v_ranking_tables);
  381. return v_ranking_tables;
  382. }
  383. /*
  384. * 计算风险调整收益指标排名
  385. *
  386. *
  387. */
  388. def cal_risk_adj_return_ranking(entity_type, entity_info, end_date, isFromMySQL) {
  389. table_desc = get_riskadjret_stats_table_description(entity_type);
  390. tb_data = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
  391. sec_id_col = table_desc.sec_id_col[0];
  392. tb_data.rename!(sec_id_col, 'entity_id');
  393. t = SELECT *
  394. FROM entity_info en
  395. INNER JOIN tb_data d ON en.entity_id = d.entity_id
  396. WHERE en.strategy IS NOT NULL;
  397. // 按照 MySQL 字段建表
  398. t_s = create_entity_indicator_ranking(false);
  399. t_s_num = create_entity_indicator_ranking_num(false);
  400. t_ss = create_entity_indicator_substrategy_ranking(false);
  401. t_ss_num = create_entity_indicator_substrategy_ranking_num(false);
  402. v_ranking_tables = [t_s, t_s_num, t_ss, t_ss_num];
  403. // Kappa ratio
  404. run_ranking_sql(t, 'kapparatio', 14, false, v_ranking_tables);
  405. // Treynor ratio
  406. run_ranking_sql(t, 'treynorratio', 15, false, v_ranking_tables);
  407. // Jensen
  408. run_ranking_sql(t, 'jensen', 16, false, v_ranking_tables);
  409. // Omega ratio
  410. run_ranking_sql(t, 'omegaratio', 17, false, v_ranking_tables);
  411. // Sharpe ratio
  412. run_ranking_sql(t, 'sharperatio', 18, false, v_ranking_tables);
  413. // MAR Sortino ratio dolphin 未计算
  414. //run_ranking_sql(t, 'sortinoratio_MAR', 19, false, v_ranking_tables);
  415. // Calmar ratio
  416. run_ranking_sql(t, 'calmarratio', 40, false, v_ranking_tables);
  417. // Sortino ratio
  418. run_ranking_sql(t, 'sortinoratio', 58, false, v_ranking_tables);
  419. return v_ranking_tables;
  420. }
  421. /*
  422. * 计算杂项指标排名
  423. *
  424. *
  425. */
  426. def cal_other_indicator_ranking(entity_type, entity_info, end_date, isFromMySQL) {
  427. table_desc = get_indicator_table_description(entity_type);
  428. tb_data = get_monthly_indicator_data(table_desc.table_name[0], end_date, isFromMySQL);
  429. sec_id_col = table_desc.sec_id_col[0];
  430. tb_data.rename!(sec_id_col, 'entity_id');
  431. t = SELECT *
  432. FROM entity_info en
  433. INNER JOIN tb_data d ON en.entity_id = d.entity_id
  434. WHERE en.strategy IS NOT NULL;
  435. // 按照 MySQL 字段建表
  436. t_s = create_entity_indicator_ranking(false);
  437. t_s_num = create_entity_indicator_ranking_num(false);
  438. t_ss = create_entity_indicator_substrategy_ranking(false);
  439. t_ss_num = create_entity_indicator_substrategy_ranking_num(false);
  440. v_ranking_tables = [t_s, t_s_num, t_ss, t_ss_num];
  441. // 风格一致性 dolphin 未计算
  442. //run_ranking_sql(t, 'per_con', 37, false, v_ranking_tables);
  443. // Information ratio
  444. run_ranking_sql(t, 'info_ratio', 38, false, v_ranking_tables);
  445. // Value at Risk
  446. run_ranking_sql(t, 'var', 41, true, v_ranking_tables);
  447. // Conditional Value at Risk
  448. run_ranking_sql(t, 'cvar', 42, true, v_ranking_tables);
  449. // SMDD 模型下的 VaR dolphin 未计算
  450. //run_ranking_sql(t, 'smddvar', 43, true, v_ranking_tables);
  451. // SMDD 模型下的 CVaR dolphin 未计算
  452. //run_ranking_sql(t, 'smddcvar', 44, true, v_ranking_tables);
  453. // SMDD 模型下的 LPM1 dolphin 未计算
  454. //run_ranking_sql(t, 'smdd_lpm1', 45, true, v_ranking_tables);
  455. // SMDD 模型下的 LPM2 dolphin 未计算
  456. //run_ranking_sql(t, 'smdd_lpm2', 46, true, v_ranking_tables);
  457. // SMDD 模型下的下行风险 dolphin 未计算
  458. //run_ranking_sql(t, 'smdd_downside_dev', 47, true, v_ranking_tables);
  459. // 跟踪误差
  460. run_ranking_sql(t, 'tracking_error', 48, true, v_ranking_tables);
  461. // M2
  462. run_ranking_sql(t, 'm2', 49, false, v_ranking_tables);
  463. return v_ranking_tables;
  464. }
  465. /*
  466. * 排名数据入库
  467. *
  468. * @param ranking_tables <VECTOR>: 包含4个数据表的向量,分别是一级策略排名,一级策略排名阈值,二级策略排名,二级策略排名阈值
  469. */
  470. def save_ranking_tables(ranking_tables) {
  471. if(ranking_tables.isVoid()) return;
  472. ranking_tables[0].rename!('entity_id', 'fund_id');
  473. save_and_sync(ranking_tables[0], 'raw_db.pf_fund_indicator_ranking', 'raw_db.pf_fund_indicator_ranking');
  474. save_and_sync(ranking_tables[1], 'raw_db.pf_fund_indicator_ranking_num', 'raw_db.pf_fund_indicator_ranking_num');
  475. ranking_tables[2].rename!('entity_id', 'fund_id');
  476. save_and_sync(ranking_tables[2], 'raw_db.pf_fund_indicator_substrategy_ranking', 'raw_db.pf_fund_indicator_substrategy_ranking');
  477. save_and_sync(ranking_tables[3], 'raw_db.pf_fund_indicator_substrategy_ranking_num', 'raw_db.pf_fund_indicator_substrategy_ranking_num');
  478. }