indicatorCalculator.dos 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299
  1. module fundit::indicatorCalculator
  2. use fundit::dataPuller
  3. use fundit::returnCalculator
  4. use fundit::navCalculator
  5. /*
  6. * Annulized multiple
  7. */
  8. def get_annulization_multiple(freq) {
  9. ret = 1;
  10. if (freq == 'd') {
  11. ret = 252; // We have differences here between Java and DolphinDB, Java uses 365.25 days
  12. } else if (freq == 'w') {
  13. ret = 52;
  14. } else if (freq == 'm') {
  15. ret = 12;
  16. } else if (freq == 'q') {
  17. ret = 4;
  18. } else if (freq == 's') {
  19. ret = 2;
  20. } else if (freq == 'a') {
  21. ret = 1;
  22. }
  23. return ret;
  24. }
  25. /*
  26. * 将VaR包裹一层,使之成为系统认可的聚集函数
  27. * @param returns <DOUBLE VECTOR>: 非空收益率
  28. * @param method <STRING>: 'normal', 'logNormal', 'historical', 'monteCarlo'
  29. * @param confidenceLevel <DOUBLE>: 置信水平,取值区间(0, 1)
  30. *
  31. */
  32. defg aggVaR(returns, method, confidenceLevel) {
  33. return returns.VaR(method, confidenceLevel);
  34. }
  35. /*
  36. * 将CVaR包裹一层,使之成为系统认可的聚集函数
  37. * @param returns <DOUBLE VECTOR>: 非空收益率
  38. * @param method <STRING>: 'normal', 'logNormal', 'historical', 'monteCarlo'
  39. * @param confidenceLevel <DOUBLE>: 置信水平,取值区间(0, 1)
  40. *
  41. */
  42. defg aggCVaR(returns, method, confidenceLevel) {
  43. return returns.CVaR(method, confidenceLevel);
  44. }
  45. /*
  46. * 回撤
  47. *
  48. *
  49. */
  50. defg maxDrawdown(navs) {
  51. return max(1 - navs \ cummax(navs));
  52. }
  53. /*
  54. * 取主基准和BFI的历史月收益率
  55. *
  56. * @param benchmarks <TABLE>: entity-benchmark 的对应关系表
  57. * @param end_day <DATE>: 收益的截止日期
  58. *
  59. * @return <TABLE>: benchmark_id, end_date, ret
  60. *
  61. */
  62. def get_benchmark_return(benchmarks, end_day) {
  63. s_index_ids = '';
  64. s_factor_ids = '';
  65. if(benchmarks.isVoid() || benchmarks.size() == 0) { return null; }
  66. // 前缀为 IN 的 benchmark id
  67. t_index_id = SELECT DISTINCT benchmark_id FROM benchmarks WHERE benchmark_id LIKE 'IN%';
  68. s_index_ids = iif(isVoid(t_index_id), "", "'" + t_index_id.benchmark_id.concat("','") + "'");
  69. // 前缀为 FA 的 benchmark id
  70. t_factor_id = SELECT DISTINCT benchmark_id FROM benchmarks WHERE benchmark_id LIKE 'FA%';
  71. s_factor_ids = iif(isVoid(t_factor_id), "", "'" + t_factor_id.benchmark_id.concat("','") + "'");
  72. // 目前指数的月度业绩存在 fund_performance 表
  73. t_bmk = SELECT fund_id AS benchmark_id, temporalParse(end_date, 'yyyy-MM') AS end_date, ret FROM get_monthly_ret('IX', s_index_ids, 1990.01.01, end_day, true);
  74. // 而因子的月度业绩存在 cm_factor_performance 表
  75. INSERT INTO t_bmk SELECT factor_id, temporalParse(end_date, 'yyyy-MM') AS end_date, ret FROM get_monthly_ret('FA', s_factor_ids, 1990.01.01, end_day, true);
  76. return t_bmk;
  77. }
  78. /*
  79. * Trailing Monthly Return, Standard Deviation, Skewness, Kurtosis, Max Drawdown, VaR, CVaR, Calmar Ratio
  80. *
  81. * @param entity_info <TABLE>: xxx_information表,NEED COLUMNS entity_id, inception_date
  82. * @param ret <TABLE>: 收益表,需要有 entity_id, price_dat, end_date, nav
  83. * @param trailing_month <STRING>: trailing X month or ytd, incep
  84. *
  85. * NOTE: standard deviation of Java version is noncompliant-GIPS annulized number
  86. *
  87. * Create: 20240904 Joey
  88. * TODO: SQL is wrong for max drawdowns
  89. * TODO: var, cvar, calmar are off; std dev, skewness, kurtosis are slightly off
  90. * TODO: SQL is missing for portfolio since inception date return
  91. * TODO: Java calculates max drawdown even there is no nav
  92. * TODO: Java ytd worst month could be wrong (i.e. portfolio 166002, 2024-03)
  93. *
  94. */
  95. def cal_basic_performance(entity_info, ret, trailing_month) {
  96. // accumulate 版的 skewness, kurtosis, var, cvar 似乎都不对劲,只好找个笨办法来实现
  97. if(trailing_month == 'incep') {
  98. // 需要至少6个数才计算标准差、峰度、偏度
  99. t0 = SELECT price_date.max() AS price_date,
  100. prod(1+ret)-1 AS trailing_ret,
  101. prod(1+ret)-1 AS trailing_ret_a,
  102. iif(count(entity_id) > 5, std(ret), null) AS std_dev,
  103. iif(count(entity_id) > 5, skew(ret, false), null) AS skewness,
  104. iif(count(entity_id) > 5, kurtosis(ret, false), null)-3 AS kurtosis,
  105. min(ret) AS wrst_month
  106. FROM ret
  107. WHERE ret > -1
  108. GROUP BY entity_id
  109. CGROUP BY end_date
  110. ORDER BY end_date;
  111. // 年化收益(给后面计算Calmar用)
  112. UPDATE t0
  113. SET trailing_ret_a = (1+trailing_ret).pow(12\(t0.end_date - ei.inception_date.month()))-1
  114. FROM ej(t0, entity_info ei, 'entity_id')
  115. WHERE t0.end_date > ei.inception_date.month() + 12;
  116. // 不会用上面的办法算最大回撤, VaR, CVaR
  117. t_var = SELECT entity_id, end_date, ret,
  118. cummax(1 - nav \ cummax(nav)) AS drawdown,
  119. - cumpercentile(ret, 5, 'linear') AS var
  120. FROM ret WHERE ret > -1
  121. CONTEXT BY entity_id;
  122. t_cvar = SELECT entity_id, end_date, drawdown, var,
  123. - cumavg(iif(ret <= -var, ret, null)) AS cvar
  124. FROM t_var
  125. CONTEXT BY entity_id;
  126. t1 = SELECT t0.*, t_cvar.drawdown, t_cvar.var, t_cvar.cvar
  127. FROM t0 LEFT JOIN t_cvar ON t0.entity_id = t_cvar.entity_id AND t0.end_date = t_cvar.end_date
  128. ORDER BY t0.entity_id, t0.end_date;
  129. } else if(trailing_month == 'ytd') {
  130. t1 = SELECT entity_id, end_date, price_date.cummax() AS price_date,
  131. cumprod(1+ret)-1 AS trailing_ret,
  132. cumprod(1+ret)-1 AS trailing_ret_a, // no need annulization for ytd
  133. iif(cumcount(entity_id) > 5, cumstd(ret), null) AS std_dev,
  134. iif(cumcount(entity_id) > 5, tmoving(skew{, false}, end_date, ret, 12), null) AS skewness,
  135. iif(cumcount(entity_id) > 5, tmoving(kurtosis{, false}, end_date, ret, 12)-3, null) AS kurtosis,
  136. cummin(ret) AS wrst_month,
  137. cummax(1 - nav \ cummax(nav)) AS drawdown
  138. FROM ret WHERE ret > -1
  139. CONTEXT BY entity_id, end_date.year()
  140. ORDER BY entity_id, end_date;
  141. // trailing x month
  142. } else {
  143. win = trailing_month$INT;
  144. t1 = SELECT entity_id, end_date, price_date.mmax(win) AS price_date,
  145. mprod(1+ret, win)-1 AS trailing_ret,
  146. iif(trailing_month > 12,
  147. mprod(1+ret, win).pow(12\win)-1,
  148. mprod(1+ret, win)-1) AS trailing_ret_a,
  149. mstd(ret, win) AS std_dev,
  150. mskew(ret, win, false) AS skewness,
  151. mkurtosis(ret, win, false) - 3 AS kurtosis,
  152. mmin(ret, win) AS wrst_month,
  153. moving(maxDrawdown, nav, win) AS drawdown,
  154. moving(aggVaR{, 'historical', 0.95}, ret, win) AS var,
  155. moving(aggCVaR{, 'historical', 0.95}, ret, win) AS cvar
  156. FROM ret WHERE ret > -1
  157. CONTEXT BY entity_id
  158. ORDER BY entity_id, end_date;
  159. }
  160. t1.addColumn('calmar', DOUBLE);
  161. UPDATE t1 SET calmar = iif(drawdown == 0, null, trailing_ret_a\drawdown);
  162. return t1;
  163. }
  164. /*
  165. * Lower Partial Moment
  166. * NOTE: risk free rate is used as Minimal Accepted Rate (MAR) here
  167. *
  168. */
  169. def cal_LPM(ret, risk_free, trailing_month) {
  170. t = SELECT *, cumcount(entity_id) AS cnt FROM ret WHERE ret > -1 CONTEXT BY entity_id;
  171. if(trailing_month == 'incep') {
  172. lpm = SELECT entity_id, end_date,
  173. iif(cumcount(end_date) > 5, (cumsum (iif(rfr.ret > t.ret, rfr.ret - t.ret, 0)) \ cumcount(end_date)).pow(1\1), null) AS lpm1,
  174. iif(cumcount(end_date) > 5, (cumsum2 (iif(rfr.ret > t.ret, rfr.ret - t.ret, 0)) \ cumcount(end_date)).pow(1\2), null) AS lpm2,
  175. iif(cumcount(end_date) > 5, (cumsum3 (iif(rfr.ret > t.ret, rfr.ret - t.ret, 0)) \ cumcount(end_date)).pow(1\3), null) AS lpm3
  176. FROM t
  177. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  178. CONTEXT BY entity_id
  179. ORDER BY entity_id, end_date;
  180. } else if(trailing_month == 'ytd') {
  181. lpm = SELECT entity_id, end_date,
  182. iif(cumcount(end_date) > 5, (cumsum (iif(rfr.ret > t.ret, rfr.ret - t.ret, 0)) \ cumcount(end_date)).pow(1\1), null) AS lpm1,
  183. iif(cumcount(end_date) > 5, (cumsum2 (iif(rfr.ret > t.ret, rfr.ret - t.ret, 0)) \ cumcount(end_date)).pow(1\2), null) AS lpm2,
  184. iif(cumcount(end_date) > 5, (cumsum3 (iif(rfr.ret > t.ret, rfr.ret - t.ret, 0)) \ cumcount(end_date)).pow(1\3), null) AS lpm3
  185. FROM t
  186. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  187. CONTEXT BY entity_id, end_date.year()
  188. ORDER BY entity_id, end_date;
  189. } else {
  190. win = trailing_month$INT;
  191. lpm = SELECT t.entity_id, t.end_date,
  192. (msum (iif(rfr.ret > t.ret, rfr.ret - t.ret, 0), win) \ mcount(end_date, win)).pow(1\1) AS lpm1,
  193. (msum2(iif(rfr.ret > t.ret, rfr.ret - t.ret, 0), win) \ mcount(end_date, win)).pow(1\2) AS lpm2,
  194. (moving(sum3, iif(rfr.ret > t.ret, rfr.ret - t.ret, 0), win) \ mcount(end_date, win)).pow(1\3) AS lpm3
  195. FROM t
  196. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  197. CONTEXT BY t.entity_id
  198. ORDER BY entity_id, end_date;
  199. }
  200. return lpm;
  201. }
  202. /*
  203. * Downside Devision, Omega Ratio, Sortino Ratio, Kappa Ratio
  204. *
  205. * TODO: Java version of Downside Deviation (LPM2) uses cnt-1 as denominator to calculate mean excess return, which might be wrong
  206. * Java version of Omega could be wrong because Java uses annualized returns and cnt-1
  207. * Java'version of Kappa could be very wrong
  208. *
  209. */
  210. def cal_omega_sortino_kappa(ret, risk_free, trailing_month) {
  211. lpm = cal_LPM(ret, risk_free, trailing_month);
  212. if(trailing_month == 'incep') {
  213. tb = SELECT t.entity_id, t.end_date,
  214. l.lpm2 AS ds_dev,
  215. (t.ret - rfr.ret ).cumavg() \ l.lpm1 + 1 AS omega,
  216. (t.ret - rfr.ret ).cumavg() \ l.lpm2 AS sortino,
  217. (t.ret - rfr.ret ).cumavg() \ l.lpm3 AS kappa
  218. FROM ret t
  219. INNER JOIN lpm l ON t.entity_id = l.entity_id AND t.end_date = l.end_date
  220. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  221. WHERE t.ret > -1
  222. CONTEXT BY t.entity_id;
  223. } else if(trailing_month == 'ytd') {
  224. tb = SELECT t.entity_id, t.end_date,
  225. l.lpm2 AS ds_dev,
  226. (t.ret - rfr.ret ).cumavg() \ l.lpm1 + 1 AS omega,
  227. (t.ret - rfr.ret ).cumavg() \ l.lpm2 AS sortino,
  228. (t.ret - rfr.ret ).cumavg() \ l.lpm3 AS kappa
  229. FROM ret t
  230. INNER JOIN lpm l ON t.entity_id = l.entity_id AND t.end_date = l.end_date
  231. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  232. WHERE t.ret > -1
  233. CONTEXT BY t.entity_id, t.end_date.year();
  234. } else {
  235. win = trailing_month$INT;
  236. tb = SELECT t.entity_id, t.end_date,
  237. l.lpm2 AS ds_dev,
  238. (t.ret - rfr.ret ).mavg(win) \ l.lpm1 + 1 AS omega,
  239. (t.ret - rfr.ret ).mavg(win) \ l.lpm2 AS sortino,
  240. (t.ret - rfr.ret ).mavg(win) \ l.lpm3 AS kappa
  241. FROM ret t
  242. INNER JOIN lpm l ON t.entity_id = l.entity_id AND t.end_date = l.end_date
  243. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  244. WHERE t.ret > -1
  245. CONTEXT BY t.entity_id;
  246. }
  247. return tb;
  248. }
  249. /*
  250. * Winning Ratio, Tracking Error, Information Ratio
  251. *
  252. * NOTE: mcount is very unique in mFun, because it doesn't support minPeriods(BUG?), while others default minPeriods = window.
  253. * As a result, we have to delete records having winrate but no tracking error and info ratio for the sake of consisence
  254. *
  255. * TODO: Win Rate incept is off, because Java incorrectly takes all end_date as denominator even when benchmark has no price
  256. * Information Ratio is way off!
  257. * Not sure how to describe a giant number("inf"), for now 999 is used
  258. */
  259. def cal_benchmark_tracking(ret, benchmarks, bmk_ret, trailing_month) {
  260. if(trailing_month == 'incep') {
  261. t0 = SELECT t.entity_id, t.end_date, t.price_date,
  262. t.ret, bmk.ret AS ret_bmk,
  263. t.entity_id.cumcount() AS cnt,
  264. t.ret - bmk.ret AS exc_ret, bm.benchmark_id
  265. FROM ret t
  266. INNER JOIN benchmarks bm ON t.entity_id = bm.entity_id AND t.end_date = bm.end_date
  267. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND bm.benchmark_id = bmk.benchmark_id
  268. WHERE t.ret > -1
  269. AND bmk.ret > -1
  270. CONTEXT BY t.entity_id, bm.benchmark_id;
  271. t = SELECT entity_id, end_date, benchmark_id,
  272. iif(cnt > 5, cumcount(iif(exc_ret >= 0, 1, null)) \ cnt, null) AS winrate,
  273. iif(cnt > 5, exc_ret.cumstd(), null) AS track_error,
  274. iif(cnt > 5, iif(exc_ret.cumstd() == 0, null, exc_ret.cumavg() \ exc_ret.cumstd()), 5) AS info
  275. FROM t0
  276. CONTEXT BY entity_id, benchmark_id
  277. ORDER BY entity_id, end_date, benchmark_id;
  278. } else if(trailing_month == 'ytd') {
  279. t0 = SELECT t.entity_id, t.end_date, t.price_date,
  280. t.ret, bmk.ret AS ret_bmk,
  281. t.entity_id.cumcount() AS cnt, t.ret - bmk.ret AS exc_ret, bm.benchmark_id
  282. FROM ret t
  283. INNER JOIN benchmarks bm ON t.entity_id = bm.entity_id AND t.end_date = bm.end_date
  284. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND bm.benchmark_id = bmk.benchmark_id
  285. WHERE t.ret > -1
  286. AND bmk.ret > -1
  287. CONTEXT BY t.entity_id, bm.benchmark_id, t.end_date.year();
  288. t = SELECT entity_id, end_date, benchmark_id,
  289. iif(cnt > 5, cumcount(iif(exc_ret >= 0, 1, null)) \ cnt, null) AS winrate,
  290. iif(cnt > 5, exc_ret.cumstd(), null) AS track_error,
  291. iif(cnt > 5, iif(exc_ret.cumstd() == 0, null, exc_ret.cumavg() \ exc_ret.cumstd()), null) AS info
  292. FROM t0
  293. CONTEXT BY entity_id, benchmark_id, end_date.year()
  294. ORDER BY entity_id, end_date, benchmark_id;
  295. } else {
  296. win = trailing_month$INT;
  297. t0 = SELECT t.entity_id, t.end_date, t.price_date,
  298. t.ret, bmk.ret AS ret_bmk,
  299. t.entity_id.mcount(win) AS cnt,
  300. t.ret - bmk.ret AS exc_ret, bm.benchmark_id
  301. FROM ret t
  302. INNER JOIN benchmarks bm ON t.entity_id = bm.entity_id AND t.end_date = bm.end_date
  303. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND bm.benchmark_id = bmk.benchmark_id
  304. WHERE t.ret > -1
  305. AND bmk.ret > -1
  306. CONTEXT BY t.entity_id, bm.benchmark_id;
  307. t = SELECT entity_id, end_date, benchmark_id,
  308. iif(cnt > 5, mcount(iif(exc_ret >= 0, 1, null), win) \ cnt, null) AS winrate,
  309. iif(cnt > 5, mstd(exc_ret, win), null) AS track_error,
  310. iif(cnt > 5, iif(mstd(exc_ret, win) == 0, null, mavg(exc_ret, win) \ mstd(exc_ret, win)), null) AS info
  311. FROM t0
  312. CONTEXT BY entity_id, benchmark_id
  313. ORDER BY entity_id, end_date, benchmark_id;
  314. }
  315. return t; //SELECT * FROM t WHERE track_error IS NOT NULL;
  316. }
  317. /*
  318. * Alpha & Beta
  319. * NOTE: alpha of Java version is wrong because it doesn't use risk free rate
  320. */
  321. def cal_alpha_beta(ret, benchmarks, bmk_ret, risk_free, trailing_month) {
  322. t = SELECT t.entity_id, t.end_date, t.ret, bm.benchmark_id, bmk.ret AS ret_bmk
  323. FROM ret t
  324. INNER JOIN benchmarks bm ON t.entity_id = bm.entity_id AND t.end_date = bm.end_date
  325. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND bm.benchmark_id = bmk.benchmark_id
  326. WHERE t.ret > -1
  327. AND bmk.ret > -1;
  328. if(trailing_month == 'incep') {
  329. beta = SELECT entity_id, end_date, benchmark_id,
  330. iif(cumcount(end_date) > 5, ret.cumbeta(ret_bmk), null) AS beta
  331. FROM t CONTEXT BY entity_id, benchmark_id;
  332. alpha = SELECT t.entity_id, t.end_date, t.benchmark_id, beta.beta AS beta,
  333. (t.ret - rfr.ret).cumavg() - beta.beta * (t.ret_bmk - rfr.ret).cumavg() AS alpha
  334. FROM t
  335. INNER JOIN beta beta ON t.entity_id = beta.entity_id AND t.benchmark_id = beta.benchmark_id AND t.end_date = beta.end_date
  336. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  337. CONTEXT BY t.entity_id, t.benchmark_id
  338. ORDER BY t.entity_id, t.end_date, t.benchmark_id;
  339. } else if(trailing_month == 'ytd') {
  340. beta = SELECT entity_id, end_date, benchmark_id,
  341. iif(cumcount(end_date) > 5, ret.cumbeta(ret_bmk), null) AS beta
  342. FROM t CONTEXT BY entity_id, benchmark_id, end_date.year();
  343. alpha = SELECT t.entity_id, t.end_date, t.benchmark_id, beta.beta AS beta,
  344. (t.ret - rfr.ret).cumavg() - beta.beta * (t.ret_bmk - rfr.ret).cumavg() AS alpha
  345. FROM t
  346. INNER JOIN beta beta ON t.entity_id = beta.entity_id AND t.benchmark_id = beta.benchmark_id AND t.end_date = beta.end_date
  347. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  348. CONTEXT BY t.entity_id, t.benchmark_id, t.end_date.year()
  349. ORDER BY t.entity_id, t.end_date, t.benchmark_id;
  350. } else {
  351. win = trailing_month$INT;
  352. beta = SELECT entity_id, end_date, benchmark_id,
  353. iif(mcount(end_date, win) > 5, ret.mbeta(ret_bmk, win), null) AS beta
  354. FROM t CONTEXT BY entity_id, benchmark_id;
  355. alpha = SELECT t.entity_id, t.end_date, t.benchmark_id, beta.beta AS beta,
  356. (t.ret - rfr.ret).mavg(win) - beta.beta * (t.ret_bmk - rfr.ret).mavg(win) AS alpha
  357. FROM t
  358. INNER JOIN beta beta ON t.entity_id = beta.entity_id AND t.benchmark_id = beta.benchmark_id AND t.end_date = beta.end_date
  359. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  360. CONTEXT BY t.entity_id, t.benchmark_id
  361. ORDER BY t.entity_id, t.end_date, t.benchmark_id;
  362. }
  363. return alpha;
  364. }
  365. /*
  366. * Upside/Down Capture Return/Ratio
  367. *
  368. * TODO: trailing x month values are way off!
  369. *
  370. */
  371. def cal_capture_ratio(ret, benchmarks, bmk_ret, trailing_month) {
  372. if(trailing_month == 'incep') {
  373. t1 = SELECT t.entity_id, t.end_date,
  374. (1 + iif(bmk.ret >= 0, t.ret, 0)).cumprod() AS upside_ret,
  375. (1 + iif(bmk.ret >= 0, bmk.ret, 0)).cumprod() AS bmk_upside_ret,
  376. cumcount(iif(bmk.ret >= 0, 1, null)) AS bmk_upside_cnt,
  377. (1 + iif(bmk.ret < 0, t.ret, 0)).cumprod() AS downside_ret,
  378. (1 + iif(bmk.ret < 0, bmk.ret, 0)).cumprod() AS bmk_downside_ret,
  379. cumcount(iif(bmk.ret < 0, 1, null)) AS bmk_downside_cnt,
  380. bm.benchmark_id
  381. FROM ret t
  382. INNER JOIN benchmarks bm ON t.entity_id = bm.entity_id AND t.end_date = bm.end_date
  383. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND bm.benchmark_id = bmk.benchmark_id AND t.end_date = bmk.end_date
  384. WHERE t.ret > -1
  385. AND bmk.ret > -1
  386. CONTEXT BY t.entity_id, bm.benchmark_id;
  387. } else if(trailing_month == 'ytd') {
  388. t1 = SELECT t.entity_id, t.end_date,
  389. (1 + iif(bmk.ret >= 0, t.ret, 0)).cumprod() AS upside_ret,
  390. (1 + iif(bmk.ret >= 0, bmk.ret, 0)).cumprod() AS bmk_upside_ret,
  391. cumcount(iif(bmk.ret >= 0, 1, null)) AS bmk_upside_cnt,
  392. (1 + iif(bmk.ret < 0, t.ret, 0)).cumprod() AS downside_ret,
  393. (1 + iif(bmk.ret < 0, bmk.ret, 0)).cumprod() AS bmk_downside_ret,
  394. cumcount(iif(bmk.ret < 0, 1, null)) AS bmk_downside_cnt,
  395. bm.benchmark_id
  396. FROM ret t
  397. INNER JOIN benchmarks bm ON t.entity_id = bm.entity_id AND t.end_date = bm.end_date
  398. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND bm.benchmark_id = bmk.benchmark_id AND t.end_date = bmk.end_date
  399. WHERE t.ret > -1
  400. AND bmk.ret > -1
  401. CONTEXT BY t.entity_id, bm.benchmark_id, t.end_date.year();
  402. } else {
  403. win = trailing_month$INT;
  404. t1 = SELECT t.entity_id, t.end_date,
  405. (1 + iif(bmk.ret >= 0, t.ret, 0)).mprod(win) AS upside_ret,
  406. (1 + iif(bmk.ret >= 0, bmk.ret, 0)).mprod(win) AS bmk_upside_ret,
  407. mcount(iif(bmk.ret >= 0, 1, null), win) AS bmk_upside_cnt,
  408. (1 + iif(bmk.ret < 0, t.ret, 0)).mprod(win) AS downside_ret,
  409. (1 + iif(bmk.ret < 0, bmk.ret, 0)).mprod(win) AS bmk_downside_ret,
  410. mcount(iif(bmk.ret < 0, 1, null), win) AS bmk_downside_cnt,
  411. bm.benchmark_id
  412. FROM ret t
  413. INNER JOIN benchmarks bm ON t.entity_id = bm.entity_id AND t.end_date = bm.end_date
  414. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND bm.benchmark_id = bmk.benchmark_id AND t.end_date = bmk.end_date
  415. WHERE t.ret > -1
  416. AND bmk.ret > -1
  417. CONTEXT BY t.entity_id, bm.benchmark_id;
  418. }
  419. t = SELECT entity_id, end_date, benchmark_id,
  420. t1.upside_ret.pow(1 \ t1.bmk_upside_cnt)-1 AS upside_capture_ret,
  421. (t1.upside_ret.pow(1 \ t1.bmk_upside_cnt)-1)/(t1.bmk_upside_ret.pow(1 \ t1.bmk_upside_cnt)-1) AS upside_capture_ratio,
  422. t1.downside_ret.pow(1 \ t1.bmk_downside_cnt)-1 AS downside_capture_ret,
  423. (t1.downside_ret.pow(1 \ t1.bmk_downside_cnt)-1)/(t1.bmk_downside_ret.pow(1 \ t1.bmk_downside_cnt)-1) AS downside_capture_ratio
  424. FROM t1
  425. ORDER BY entity_id, benchmark_id, end_date;
  426. return t;
  427. }
  428. /*
  429. * Sharpe Ratio
  430. * NOTE: Java version is noncompliant-GIPS annulized number
  431. */
  432. def cal_sharpe(ret, std_dev, risk_free, trailing_month) {
  433. if(trailing_month == 'incep') {
  434. sharpe = SELECT t.entity_id, t.end_date, (t.ret - rfr.ret).cumavg() / std.std_dev AS sharpe
  435. FROM ret t
  436. INNER JOIN std_dev std ON t.entity_id = std.entity_id AND t.end_date = std.end_date
  437. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  438. WHERE std.std_dev <> 0 AND t.ret > -1
  439. CONTEXT BY t.entity_id;
  440. } else if(trailing_month == 'ytd') {
  441. sharpe = SELECT t.entity_id, t.end_date, (t.ret - rfr.ret).cumavg() / std.std_dev AS sharpe
  442. FROM ret t
  443. INNER JOIN std_dev std ON t.entity_id = std.entity_id AND t.end_date = std.end_date
  444. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  445. WHERE std.std_dev <> 0 AND t.ret > -1
  446. CONTEXT BY t.entity_id, t.end_date.year();
  447. } else {
  448. win = trailing_month$INT;
  449. sharpe = SELECT t.entity_id, t.end_date, (t.ret - rfr.ret).mavg(win) / std.std_dev AS sharpe
  450. FROM ret t
  451. INNER JOIN std_dev std ON t.entity_id = std.entity_id AND t.end_date = std.end_date
  452. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  453. WHERE std.std_dev <> 0 AND t.ret > -1
  454. CONTEXT BY t.entity_id;
  455. }
  456. return sharpe;
  457. }
  458. /*
  459. * Treynor Ratio = annulized excess return / beta
  460. *
  461. * TODO: ytd is off because Java uses non-GIPS rule to annulize return
  462. */
  463. def cal_treynor(ret, risk_free, beta, trailing_month) {
  464. if(trailing_month == 'incep') {
  465. t = SELECT *, cumcount(entity_id) AS cnt
  466. FROM ret t
  467. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  468. WHERE t.ret > -1
  469. AND rfr.ret > -1
  470. CONTEXT BY t.entity_id;
  471. treynor = SELECT t.entity_id, t.end_date, beta.benchmark_id,
  472. ((1 + t.ret).cumprod().pow(12\iif(t.cnt<12, 12, t.cnt)) - (1 + t.rfr_ret).cumprod().pow(12\iif(t.cnt<12, 12, t.cnt))) / beta.beta AS treynor
  473. FROM t
  474. INNER JOIN beta AS beta ON t.entity_id = beta.entity_id AND t.end_date = beta.end_date
  475. CONTEXT BY t.entity_id, beta.benchmark_id;
  476. } else if(trailing_month == 'ytd') {
  477. t = SELECT *, cumcount(entity_id) AS cnt
  478. FROM ret t
  479. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  480. WHERE t.ret > -1
  481. AND rfr.ret > -1
  482. CONTEXT BY t.entity_id, t.end_date.year();
  483. treynor = SELECT t.entity_id, t.end_date, beta.benchmark_id,
  484. ((1 + t.ret).cumprod().pow(12\iif(t.cnt<12, 12, t.cnt)) - (1 + t.rfr_ret).cumprod().pow(12\iif(t.cnt<12, 12, t.cnt))) / beta.beta AS treynor
  485. FROM t
  486. INNER JOIN beta AS beta ON t.entity_id = beta.entity_id AND t.end_date = beta.end_date
  487. CONTEXT BY t.entity_id, beta.benchmark_id, t.end_date.year();
  488. } else {
  489. win = trailing_month$INT;
  490. t = SELECT *, mcount(entity_id, win) AS cnt
  491. FROM ret t
  492. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  493. WHERE t.ret > -1
  494. AND rfr.ret > -1
  495. CONTEXT BY t.entity_id;
  496. treynor = SELECT t.entity_id, t.end_date, beta.benchmark_id,
  497. ((1 + t.ret).mprod(win).pow(12\iif(t.cnt<12, 12, t.cnt)) - (1 + t.rfr_ret).mprod(win).pow(12\iif(t.cnt<12, 12, t.cnt))) / beta.beta AS treynor
  498. FROM t
  499. INNER JOIN beta AS beta ON t.entity_id = beta.entity_id AND t.end_date = beta.end_date
  500. CONTEXT BY t.entity_id, beta.benchmark_id;
  501. }
  502. return treynor;
  503. }
  504. /*
  505. * Jensen's Alpha
  506. * TODO: the result is slightly off
  507. */
  508. def cal_jensen(ret, bmk_ret, risk_free, beta, trailing_month) {
  509. if(trailing_month == 'incep') {
  510. jensen = SELECT t.entity_id, t.end_date, t.ret.cumavg() - rfr.ret.cumavg() - beta.beta * (bmk.ret.cumavg() - rfr.ret.cumavg()) AS jensen, beta.benchmark_id
  511. FROM ret t
  512. INNER JOIN beta beta ON t.entity_id = beta.entity_id AND t.end_date = beta.end_date
  513. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND beta.benchmark_id = bmk.benchmark_id
  514. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  515. WHERE t.ret > -1
  516. CONTEXT BY t.entity_id, beta.benchmark_id;
  517. } else if(trailing_month == 'ytd') {
  518. jensen = SELECT t.entity_id, t.end_date, t.ret.cumavg() - rfr.ret.cumavg() - beta.beta * (bmk.ret.cumavg() - rfr.ret.cumavg()) AS jensen, beta.benchmark_id
  519. FROM ret t
  520. INNER JOIN beta beta ON t.entity_id = beta.entity_id AND t.end_date = beta.end_date
  521. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND beta.benchmark_id = bmk.benchmark_id
  522. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  523. WHERE t.ret > -1
  524. CONTEXT BY t.entity_id, beta.benchmark_id, t.end_date.year();
  525. } else {
  526. win = trailing_month$INT;
  527. jensen = SELECT t.entity_id, t.end_date, t.ret.mavg(win) - rfr.ret.mavg(win) - beta.beta * (bmk.ret.mavg(win) - rfr.ret.mavg(win)) AS jensen, beta.benchmark_id
  528. FROM ret t
  529. INNER JOIN beta beta ON t.entity_id = beta.entity_id AND t.end_date = beta.end_date
  530. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND beta.benchmark_id = bmk.benchmark_id
  531. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  532. WHERE t.ret > -1
  533. CONTEXT BY t.entity_id, beta.benchmark_id;
  534. }
  535. return jensen;
  536. }
  537. /*
  538. * Modigliani Modigliani Measure (M2)
  539. * NOTE: M2 = sharpe * std(benchmark) + risk_free_rate
  540. * NOTE: Java version is noncompliant-GIPS annulized number
  541. */
  542. def cal_m2(ret, benchmarks, bmk_ret, risk_free, trailing_month) {
  543. if(trailing_month == 'incep') {
  544. m2 = SELECT t.entity_id, t.end_date,
  545. iif(t.entity_id.cumcount() > 5, (t.ret - rfr.ret).cumavg() / t.ret.cumstd() * bmk.ret.cumstd() + rfr.ret.cumavg(), null) AS m2, bm.benchmark_id
  546. FROM ret t
  547. INNER JOIN benchmarks bm ON t.entity_id = bm.entity_id AND t.end_date = bm.end_date
  548. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND bm.benchmark_id = bmk.benchmark_id
  549. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  550. WHERE t.ret > -1
  551. CONTEXT BY t.entity_id, bm.benchmark_id;
  552. } else if(trailing_month == 'ytd') {
  553. m2 = SELECT t.entity_id, t.end_date,
  554. iif(t.entity_id.cumcount() > 5, (t.ret - rfr.ret).cumavg() / t.ret.cumstd() * bmk.ret.cumstd() + rfr.ret.cumavg(), null) AS m2, bm.benchmark_id
  555. FROM ret t
  556. INNER JOIN benchmarks bm ON t.entity_id = bm.entity_id AND t.end_date = bm.end_date
  557. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND bm.benchmark_id = bmk.benchmark_id
  558. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  559. WHERE t.ret > -1
  560. CONTEXT BY t.entity_id, bm.benchmark_id, t.end_date.year();
  561. } else {
  562. win = trailing_month$INT;
  563. m2 = SELECT t.entity_id, t.end_date,
  564. iif(t.entity_id.mcount(win) > 5, (t.ret - rfr.ret).mavg(win) / t.ret.mstd(win) * bmk.ret.mstd(win) + rfr.ret.mavg(win), null) AS m2, bm.benchmark_id
  565. FROM ret t
  566. INNER JOIN benchmarks bm ON t.entity_id = bm.entity_id AND t.end_date = bm.end_date
  567. INNER JOIN bmk_ret bmk ON t.end_date = bmk.end_date AND bm.benchmark_id = bmk.benchmark_id
  568. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  569. WHERE t.ret > -1
  570. CONTEXT BY t.entity_id, bm.benchmark_id;
  571. }
  572. return m2;
  573. }
  574. /*
  575. * Morningstar Return, Morningstar Risk-Adjusted Return
  576. *
  577. * TODO: Tax and loads are NOT taken care of
  578. * TODO: Assume Chinese methodology using 3, 5, 10 as number of traling years
  579. * TODO: need verify with reliable results
  580. *
  581. * NOTE: Morningstar methodology requires monthly return for calculation, so that "12" is hard-coded here
  582. *
  583. *
  584. */
  585. def cal_ms_return(ret, risk_free, trailing_month) {
  586. win = trailing_month$INT;
  587. r = SELECT t.entity_id, t.end_date,
  588. ((1 + t.ret)\(1 + rfr.ret)).mprod(win).pow(12\(t.end_date.mmax(win) - t.end_date.mmin(win)))-1 AS ms_ret_a,
  589. (1 + t.ret).pow(-2).mavg(win).pow(-12/2)-1 AS ms_rar_a
  590. FROM ret t
  591. INNER JOIN risk_free rfr ON t.end_date = rfr.end_date
  592. WHERE t.ret > -1
  593. CONTEXT BY t.entity_id;
  594. return r;
  595. }
  596. /*
  597. * 有效主体-基准对应表
  598. *
  599. * @param benchmarks <TABLE>: entity-benchmark 的对应关系表 NEED COLUMNS: entity_id, end_date, benchmark_id
  600. * @param end_day <DATE>:
  601. * @param trailing_month <STRING>:
  602. * @param isEffectiveOnly <BOOL>: false时与Java相同; true:多了个限制条件:如果区间内有效基准数少于1/2,不做计算
  603. * 比如过去12个月中某BFI只出现2次,小于需要的6次,此BFI不参与 trailing 1 year 计算
  604. *
  605. */
  606. def get_effective_benchmarks(benchmarks, end_day, trailing_month, isEffectiveOnly) {
  607. min_pct = 0.5;
  608. if(isEffectiveOnly) {
  609. t_dates = SELECT DISTINCT entity_id, end_date FROM benchmarks WHERE end_date <= end_day.month();
  610. if(trailing_month == 'incep') {
  611. t = SELECT entity_id, end_date, end_date.cumcount() AS cnt FROM t_dates CONTEXT BY entity_id;
  612. bmk = SELECT bmk.* FROM benchmarks bmk
  613. INNER JOIN t ON bmk.entity_id = t.entity_id AND bmk.end_date = t.end_date
  614. CONTEXT BY bmk.entity_id, bmk.benchmark_id
  615. HAVING bmk.end_date.cumcount() >= t.cnt * min_pct;
  616. } else if(trailing_month == 'ytd') {
  617. t = SELECT entity_id, end_date, end_date.cumcount() AS cnt FROM t_dates CONTEXT BY entity_id, end_date.year();
  618. bmk = SELECT bmk.* FROM benchmarks bmk
  619. INNER JOIN t ON bmk.entity_id = t.entity_id AND bmk.end_date = t.end_date
  620. CONTEXT BY entity_id, benchmark_id, end_date.year()
  621. HAVING bmk.end_date.cumcount() >= t.cnt * min_pct;
  622. } else {
  623. win = trailing_month$INT;
  624. t = SELECT entity_id, end_date, end_date.mcount(win) AS cnt FROM t_dates CONTEXT BY entity_id;
  625. bmk = SELECT bmk.* FROM benchmarks bmk
  626. INNER JOIN t ON bmk.entity_id = t.entity_id AND bmk.end_date = t.end_date
  627. CONTEXT BY entity_id, benchmark_id
  628. HAVING bmk.end_date.mcount(win) >= t.cnt * min_pct;
  629. }
  630. } else {
  631. bmk = SELECT * FROM benchmarks WHERE end_date <= end_day.month();
  632. }
  633. return bmk;
  634. }
  635. /*
  636. * Calculation for monthly indicators which need benchmark
  637. *
  638. * @param entity_info <TABLE>: xxx_information表,NEED COLUMNS entity_id, inception_date
  639. * @param benchmark_mapping <TABLE>: entity-benchmark mapping table, NEED COLUMNS entity_id, end_date, benchmark_id
  640. * @param end_day <DATE>;
  641. * @param tb_ret <TABLE>: 收益表,NEED COLUMNS entity_id, price_dat, end_date, nav
  642. * @param index_ret <TABLE>: historical benchmark return table, NEED COLUMNS fund_id, end_date, ret
  643. * @param risk_free <TABLE>: historical risk free rate table, NEED COLUMNS fund_id, end_date, ret
  644. * @param month <INT>: trailing x month
  645. *
  646. * @return: indicators table
  647. *
  648. *
  649. * Create 20240904 模仿Java & python代码在Dolphin中实现,具体计算逻辑可能会有不同 Joey
  650. * TODO: some datapoints require more data, we need a way to disable calculation for them
  651. *
  652. */
  653. def cal_indicators_with_benchmark(entity_info, benchmark_mapping, end_day, tb_ret, index_ret, risk_free, month) {
  654. if(entity_info.isVoid() || entity_info.size() == 0 || benchmark_mapping.isVoid() || benchmark_mapping.size() == 0 ) return null;
  655. if(tb_ret.isVoid() || tb_ret.size() == 0 || index_ret.isVoid() || index_ret.size() == 0 || risk_free.isVoid() || risk_free.size() == 0 ) return null;
  656. // sorting for correct first() and last() value
  657. ret = SELECT * FROM tb_ret WHERE ret > -1 AND end_date <= end_day.month() ORDER BY entity_id, price_date;
  658. // get the effective benchmarks
  659. benchmarks = get_effective_benchmarks(benchmark_mapping, end_day, month, true);
  660. if(ret.isVoid() || ret.size() == 0 || benchmarks.isVoid() || benchmarks.size() == 0) return null;
  661. // alpha, beta
  662. alpha_beta = cal_alpha_beta(ret, benchmarks, index_ret, risk_free, month);
  663. // 胜率、跟踪误差、信息比率
  664. bmk_tracking = cal_benchmark_tracking(ret, benchmarks, index_ret, month);
  665. // 特雷诺
  666. treynor = cal_treynor(ret, risk_free, alpha_beta, month);
  667. // 詹森指数
  668. jensen = cal_jensen(ret, index_ret, risk_free, alpha_beta, month);
  669. // M2
  670. m2 = cal_m2(ret, benchmarks, index_ret, risk_free, month);
  671. // 上下行捕获率、收益
  672. capture_r = cal_capture_ratio(ret, benchmarks, index_ret, month);
  673. r = SELECT * FROM bmk_tracking a1
  674. LEFT JOIN alpha_beta ON a1.entity_id = alpha_beta.entity_id AND a1.benchmark_id = alpha_beta.benchmark_id AND a1.end_date = alpha_beta.end_date
  675. LEFT JOIN treynor ON a1.entity_id = treynor.entity_id AND a1.benchmark_id = treynor.benchmark_id AND a1.end_date = treynor.end_date
  676. LEFT JOIN jensen ON a1.entity_id = jensen.entity_id AND a1.benchmark_id = jensen.benchmark_id AND a1.end_date = jensen.end_date
  677. LEFT JOIN m2 ON a1.entity_id = m2.entity_id AND a1.benchmark_id = m2.benchmark_id AND a1.end_date = m2.end_date
  678. LEFT JOIN capture_r ON a1.entity_id = capture_r.entity_id AND a1.benchmark_id = capture_r.benchmark_id AND a1.end_date = capture_r.end_date;
  679. // 年化各数据点
  680. // GIPS RULE: NO annulization for data less than 1 year
  681. plainAnnu = get_annulization_multiple('m');
  682. sqrtAnnu = sqrt(get_annulization_multiple('m'));
  683. r.addColumn(['alpha_a', 'jensen_a', 'track_error_a', 'info_a', 'm2_a'],
  684. [DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE]);
  685. UPDATE r
  686. SET alpha_a = alpha * iif(end_date - inception_date.month() > 12, plainAnnu, 1),
  687. jensen_a = jensen * iif(end_date - inception_date.month() > 12, plainAnnu, 1),
  688. track_error_a = track_error * iif(end_date - inception_date.month() > 12, sqrtAnnu, 1),
  689. info_a = info * iif(end_date - inception_date.month() > 12, sqrtAnnu, 1),
  690. m2_a = m2 * iif(end_date - inception_date.month() > 12, plainAnnu, 1)
  691. FROM ej(r, entity_info, 'entity_id');
  692. return r;
  693. }
  694. /*
  695. * Monthly standard indicator calculation
  696. *
  697. * @param entity_info <TABLE>:
  698. * @param benchmarks <TABLE>: entity-benchmark mapping table
  699. * @param end_day <DATE>:
  700. * @param tb_ret <TABLE>: 收益表,NEED COLUMNS entity_id, price_dat, end_date, nav
  701. * @param benchmark_ret <TABLE>: historical benchmark return table, NEED COLUMNS fund_id, end_date, ret
  702. * @param risk_free <TABLE>: historical risk free rate table, NEED COLUMNS fund_id, end_date, ret
  703. * @param month <STRING>:
  704. *
  705. * @return: indicators table
  706. *
  707. *
  708. * Create 20240904 模仿Java & python代码在Dolphin中实现,具体计算逻辑可能会有不同 Joey
  709. *
  710. */
  711. def cal_indicators(entity_info, benchmarks, end_day, tb_ret, benchmark_ret, risk_free, month) {
  712. if(entity_info.isVoid() || entity_info.size() == 0 || benchmarks.isVoid() || benchmarks.size() == 0 ) return null;
  713. if(tb_ret.isVoid() || tb_ret.size() == 0 || benchmark_ret.isVoid() || benchmark_ret.size() == 0 || risk_free.isVoid() || risk_free.size() == 0 ) return null;
  714. // sorting for correct first() and last() value
  715. ret = SELECT * FROM tb_ret WHERE end_date <= end_day.month() ORDER BY entity_id, price_date;
  716. // 收益、标准差、偏度、峰度、最大回撤、VaR, CVaR、卡玛比率
  717. rtn = cal_basic_performance(entity_info, ret, month);
  718. // 夏普
  719. sharpe = cal_sharpe(ret, rtn, risk_free, month);
  720. // 整合后的下行标准差、欧米伽、索提诺、卡帕
  721. lpms = cal_omega_sortino_kappa(ret, risk_free, month);
  722. // 需要基准的指标们
  723. indicator_with_benchmark = cal_indicators_with_benchmark(entity_info, benchmarks, end_day, ret, benchmark_ret, risk_free, month);
  724. r = SELECT * FROM rtn a1
  725. LEFT JOIN sharpe ON a1.entity_id = sharpe.entity_id AND a1.end_date = sharpe.end_date
  726. LEFT JOIN lpms ON a1.entity_id = lpms.entity_id AND a1.end_date = lpms.end_date
  727. LEFT JOIN indicator_with_benchmark bmk ON a1.entity_id = bmk.entity_id AND a1.end_date = bmk.end_date;
  728. // 晨星收益和风险
  729. if(month$STRING in ['36', '60', '120']) {
  730. ms = cal_ms_return(ret, risk_free, month);
  731. r = SELECT * FROM r LEFT JOIN ms ON r.entity_id = ms.entity_id AND r.end_date = ms.end_date;
  732. }
  733. // 年化各数据点
  734. // GIPS RULE: NO annulization for data less than 1 year
  735. plainAnnu = get_annulization_multiple('m');
  736. sqrtAnnu = sqrt(get_annulization_multiple('m'));
  737. r.addColumn(['std_dev_a', 'ds_dev_a', 'sharpe_a', 'sortino_a'],
  738. [DOUBLE, DOUBLE, DOUBLE, DOUBLE]);
  739. UPDATE r
  740. SET std_dev_a = std_dev * iif(end_date - inception_date.month() > 12, sqrtAnnu, 1),
  741. ds_dev_a = ds_dev * iif(end_date - inception_date.month() > 12, sqrtAnnu, 1),
  742. sharpe_a = sharpe * iif(end_date - inception_date.month() > 12, sqrtAnnu, 1),
  743. sortino_a = sortino * iif(end_date - inception_date.month() > 12, sqrtAnnu, 1)
  744. FROM ej(r, entity_info, 'entity_id');
  745. return r;
  746. }
  747. /*
  748. * Calculate trailing 6m, ytd, 1y, 2y, 3y, 4y, 5y, 10y and since inception datapoints
  749. *
  750. * @param: func <FUNCTION>: the calculation function
  751. * @param: entity_info <TABLE>: basic information of entity, NEED COLUMNS entity_id, inception_date
  752. * @param benchmarks <TABLE>: entity-benchmark mapping table
  753. * @param: end_day <DATE>: 计算截止日期
  754. * @param: ret <TABLE>: 收益表,NEED COLUMNS entity_id, price_dat, end_date, nav
  755. * @param bmk_ret <TABLE>: historical benchmark return table, NEED COLUMNS fund_id, end_date, ret
  756. * @param risk_free <TABLE>: historical risk free rate table, NEED COLUMNS fund_id, end_date, ret
  757. * @param periods <BOOL VECTOR>: 是否计算的区间向量,分别对应 incep, ytd, 6m, 1y, 2y, 3y, 4y, 5y, 10y
  758. *
  759. *
  760. */
  761. def cal_trailing(func, entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate) {
  762. r_incep = null;
  763. r_ytd = null;
  764. r_6m = null;
  765. r_1y = null;
  766. r_2y = null;
  767. r_3y = null;
  768. r_4y = null;
  769. r_5y = null;
  770. r_10y = null;
  771. // incep
  772. r_incep = func(entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate, 'incep');
  773. // ytd
  774. r_ytd = func(entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate, 'ytd');
  775. // 6m
  776. r_6m = func(entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate, '6');
  777. // 1y
  778. r_1y = func(entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate, '12');
  779. // 2y
  780. r_2y = func(entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate, '24');
  781. // 3y
  782. r_3y = func(entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate, '36');
  783. // 4y
  784. r_4y = func(entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate, '48');
  785. // 5y
  786. r_5y = func(entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate, '60');
  787. // 10y
  788. r_10y = func(entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate, '120');
  789. return r_incep, r_ytd, r_6m, r_1y, r_2y, r_3y, r_4y, r_5y, r_10y;
  790. }
  791. /*
  792. * Calculate trailing ytd, 6m, 1y, 2y, 3y, 4y, 5y, 10y and since inception standard indicators
  793. *
  794. * @param: entity_info <TABLE>: basic information of entity, NEED COLUMNS entity_id, inception_date
  795. * @param benchmarks <TABLE>: entity-benchmark mapping table
  796. * @param: ret <TABLE>: 收益表,NEED COLUMNS entity_id, price_dat, end_date, nav
  797. * @param: end_day <DATE>: 计算截止日期
  798. * @param bmk_ret <TABLE>: historical benchmark return table, NEED COLUMNS fund_id, end_date, ret
  799. * @param risk_free <TABLE>: historical risk free rate table, NEED COLUMNS fund_id, end_date, ret
  800. *
  801. */
  802. def cal_trailing_indicators(entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate) {
  803. return cal_trailing(cal_indicators, entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate);
  804. }
  805. /*
  806. * Calculate trailing 6m, ytd, 1y, 2y, 3y, 4y, 5y, 10y and since inception bfi indicators
  807. *
  808. * @param: entity_info <TABLE>: basic information of entity, NEED COLUMNS entity_id, inception_date
  809. * @param benchmarks <TABLE>: entity-benchmark mapping table
  810. * @param: ret <TABLE>: 收益表,NEED COLUMNS entity_id, price_dat, end_date, nav
  811. * @param: end_day <DATE>: 计算截止日期
  812. * @param bmk_ret <TABLE>: historical benchmark return table, NEED COLUMNS fund_id, end_date, ret
  813. * @param risk_free <TABLE>: historical risk free rate table, NEED COLUMNS fund_id, end_date, ret
  814. *
  815. *
  816. */
  817. def cal_trailing_bfi_indicators(entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate) {
  818. return cal_trailing(cal_indicators_with_benchmark, entity_info, benchmarks, end_day, tb_ret, bmk_ret, risk_free_rate);
  819. }
  820. /*
  821. * Calculate historcial fund trailing indicators
  822. *
  823. * @param entity_type <STRING>: MF, HF
  824. * @param fund_ids <STRING>: 逗号和单引号分隔的fund_id
  825. * @param end_day <DATE>: 要计算的日期
  826. * @param isFromNav <BOOL>: 用净值实时计算还是从表中取月收益
  827. * @param isFromSQL <BOOL>: TODO: 从MySQL还是本地DolphinDB取净值/收益数据
  828. *
  829. * @return <DICT TABLE>: ['PBI-INCEP', 'PBI-YTD', 'PBI-6M', 'PBI-1Y', 'PBI-2Y', 'PBI-3Y', 'PBI-4Y', 'PBI-5Y', 'PBI-10Y', 'MS-3Y', 'MS-5Y', 'MS-10Y']
  830. *
  831. * TODO: primary_benchmark_id seems not be used as benchmark, when it is FA00000VNB
  832. *
  833. * Example: cal_fund_indicators('HF', "'HF000004KN','HF000103EU','HF00018WXG'", 2024.06.28, true);
  834. *
  835. */
  836. def cal_fund_indicators(entity_type, fund_ids, end_day, isFromNav) {
  837. very_old_date = 1990.01.01;
  838. start_month = 1990.01M;
  839. fund_info = get_fund_info(fund_ids);
  840. if(fund_info.isVoid() || fund_info.size() == 0) { return null };
  841. fund_info.rename!('fund_id', 'entity_id');
  842. if(isFromNav == true) {
  843. // 从净值开始计算收益
  844. tb_ret = SELECT * FROM cal_fund_monthly_returns(entity_type, fund_ids, true) WHERE price_date <= end_day;
  845. tb_ret.rename!(['fund_id', 'cumulative_nav'], ['entity_id', 'nav']);
  846. } else {
  847. // 从fund_performance表里读月收益
  848. tb_ret = get_monthly_ret('FD', fund_ids, very_old_date, end_day, true);
  849. tb_ret.rename!(['fund_id'], ['entity_id']);
  850. v_end_date = tb_ret.end_date.temporalParse('yyyy-MM');
  851. tb_ret.replaceColumn!('end_date', v_end_date);
  852. }
  853. if(tb_ret.isVoid() || tb_ret.size() == 0) { return null; }
  854. // 取基金和基准的对照表
  855. primary_benchmark = SELECT fund_id AS entity_id, end_date, iif(benchmark_id.isNull(), 'IN00000008', benchmark_id) AS benchmark_id
  856. FROM get_fund_primary_benchmark(fund_ids, start_month.temporalFormat('yyyy-MM'), end_day.month().temporalFormat('yyyy-MM')) ;
  857. // 取所有出现的基准月收益
  858. bmk_ret = get_benchmark_return(primary_benchmark, end_day);
  859. if(bmk_ret.isVoid() || bmk_ret.size() == 0) { return null; }
  860. risk_free_rate = SELECT fund_id, temporalParse(end_date, 'yyyy-MM') AS end_date, ret FROM get_risk_free_rate(very_old_date, end_day);
  861. if(risk_free_rate.isVoid() || risk_free_rate.size() == 0) { return null; }
  862. // 标准的指标
  863. t0 = cal_trailing_indicators(fund_info, primary_benchmark, end_day, tb_ret, bmk_ret, risk_free_rate);
  864. // Morningstar 指标
  865. //t1 = cal_trailing_ms_indicators(fund_info, tb_ret, end_day, risk_free_rate);
  866. // PBI stands for "Primary Benchmark Index", MS stands for "MorningStar"
  867. v_table_name = ['PBI-INCEP', 'PBI-YTD', 'PBI-6M', 'PBI-1Y', 'PBI-2Y', 'PBI-3Y', 'PBI-4Y', 'PBI-5Y', 'PBI-10Y'/*, 'MS-3Y', 'MS-5Y', 'MS-10Y'*/];
  868. return dict(v_table_name, t0);
  869. // return dict(v_table_name, t0 <- t1[5] <- t1[7] <- t1[8]);
  870. }
  871. /*
  872. * Calculate historcial fund trailing BFI indicators
  873. *
  874. * @param entity_type <STRING>: MF, HF
  875. * @param fund_ids <STRING>: 逗号和单引号分隔的fund_id
  876. * @param end_day <DATE>: 要计算的日期
  877. * @param isFromNav <BOOL>: 用净值实时计算还是从表中取月收益
  878. * @param isFromSQL <BOOL>: TODO: 从MySQL还是本地DolphinDB取净值/收益数据
  879. *
  880. * @return <DICT TABLE>: ['BFI-INCEP', 'BFI-YTD', 'BFI-6M', 'BFI-1Y', 'BFI-2Y', 'BFI-3Y', 'BFI-4Y', 'BFI-5Y', 'BFI-10Y']
  881. *
  882. * TODO: primary_benchmark_id seems not be used as benchmark, when it is FA00000VNB
  883. * TODO: intergrate with cal_fund_indicators
  884. *
  885. * Example: cal_fund_bfi_indicators('MF', "'MF00003PW2', 'MF00003PW1', 'MF00003PXO'", 2024.08.31, true);
  886. *
  887. */
  888. def cal_fund_bfi_indicators(entity_type, fund_ids, end_day, isFromNav) {
  889. very_old_date = 1990.01.01;
  890. start_month = 1990.01M;
  891. fund_info = get_fund_info(fund_ids);
  892. if(fund_info.isVoid() || fund_info.size() == 0) { return null };
  893. fund_info.rename!('fund_id', 'entity_id');
  894. if(isFromNav == true) {
  895. // 从净值开始计算收益
  896. tb_ret = SELECT * FROM cal_fund_monthly_returns(entity_type, fund_ids, true) WHERE price_date <= end_day;
  897. tb_ret.rename!(['fund_id', 'cumulative_nav'], ['entity_id', 'nav']);
  898. } else {
  899. // 从fund_performance表里读月收益
  900. tb_ret = get_monthly_ret('FD', fund_ids, very_old_date, end_day, true);
  901. tb_ret.rename!(['fund_id'], ['entity_id']);
  902. v_end_date = tb_ret.end_date.temporalParse('yyyy-MM');
  903. tb_ret.replaceColumn!('end_date', v_end_date);
  904. }
  905. if(tb_ret.isVoid() || tb_ret.size() == 0) { return null; }
  906. // 取基金和基准的对照表
  907. bfi_benchmark = SELECT fund_id AS entity_id, end_date.temporalParse('yyyy-MM') AS end_date, factor_id AS benchmark_id
  908. FROM get_fund_bfi_factors(fund_ids, start_month.temporalFormat('yyyy-MM'), end_day.temporalFormat('yyyy-MM'));
  909. if(bfi_benchmark.isVoid() || bfi_benchmark.size() == 0) { return null; }
  910. bmk_ret = get_benchmark_return(bfi_benchmark, end_day);
  911. risk_free_rate = SELECT fund_id, temporalParse(end_date, 'yyyy-MM') AS end_date, ret FROM get_risk_free_rate(very_old_date, end_day);
  912. if(risk_free_rate.isVoid() || risk_free_rate.size() == 0) { return null; }
  913. t0 = cal_trailing_bfi_indicators(fund_info, bfi_benchmark, end_day, tb_ret, bmk_ret, risk_free_rate);
  914. // BFI stands for "Best Fit Index"
  915. v_table_name = ['BFI-INCEP', 'BFI-YTD', 'BFI-6M', 'BFI-1Y', 'BFI-2Y', 'BFI-3Y', 'BFI-4Y', 'BFI-5Y', 'BFI-10Y'];
  916. return dict(v_table_name, t0);
  917. }
  918. /*
  919. * Calculate historcial portfolio trailing indicators
  920. *
  921. * @param portfolio_ids <STRING>: comma-delimited portfolio ids
  922. * @param end_day <DATE>: the date
  923. * @param cal_method <INT>: calculate based on cumulative nav (1) or nav (2)
  924. * @param isFromNav <BOOL>: calculate returns from NAV on-the-fly (true) or get from monthly return table (false)
  925. *
  926. * Example: cal_portfolio_indicators('166002,166114', 2024.08.31, 1, true);
  927. *
  928. */
  929. def cal_portfolio_indicators(portfolio_ids, end_day, cal_method, isFromNav) {
  930. very_old_date = 1990.01.01;
  931. start_month = very_old_date.month();
  932. portfolio_info = get_portfolio_info(portfolio_ids);
  933. if(portfolio_info.isVoid() || portfolio_info.size() == 0) { return null };
  934. portfolio_info.rename!('portfolio_id', 'entity_id');
  935. if(isFromNav == true) {
  936. // 从净值开始计算收益
  937. tb_raw_ret = SELECT * FROM cal_portfolio_nav(portfolio_ids, very_old_date, cal_method) WHERE price_date <= end_day;
  938. if(tb_raw_ret.isVoid() || tb_raw_ret.size() == 0) return null;
  939. // funky thing is you can't use "AS" for the grouping columns?
  940. tb_ret = SELECT portfolio_id, price_date.month(), price_date.last() AS price_date, (1+ret).prod()-1 AS ret, nav.last() AS nav
  941. FROM tb_raw_ret
  942. WHERE price_date <= end_day
  943. GROUP BY portfolio_id, price_date.month();
  944. tb_ret.rename!(['portfolio_id', 'month_price_date'], ['entity_id', 'end_date']);
  945. } else {
  946. // 从pf_portfolio_performance表里读月收益
  947. tb_ret = get_monthly_ret('PF', portfolio_ids, very_old_date, end_day, true);
  948. tb_ret.rename!(['portfolio_id'], ['entity_id']);
  949. v_end_date = tb_ret.end_date.temporalParse('yyyy-MM');
  950. tb_ret.replaceColumn!('end_date', v_end_date);
  951. }
  952. if(tb_ret.isVoid() || tb_ret.size() == 0) return null;
  953. // 混合因子做基准,同SQL保持一致
  954. t_dates = table(start_month..end_day.month() AS end_date);
  955. primary_benchmark = SELECT ei.entity_id, dt.end_date, 'FA00000VNB' AS benchmark_id
  956. FROM portfolio_info ei JOIN t_dates dt
  957. WHERE dt.end_date >= ei.inception_date.month();
  958. if(primary_benchmark.isVoid() || primary_benchmark.size() == 0) { return null; }
  959. // 取所有出现的基准月收益
  960. bmk_ret = get_benchmark_return(primary_benchmark, end_day);
  961. if(bmk_ret.isVoid() || bmk_ret.size() == 0) { return null; }
  962. risk_free_rate = SELECT fund_id, temporalParse(end_date, 'yyyy-MM') AS end_date, ret FROM get_risk_free_rate(very_old_date, end_day);
  963. if(risk_free_rate.isVoid() || risk_free_rate.size() == 0) { return null; }
  964. t0 = cal_trailing_indicators(portfolio_info, primary_benchmark, end_day, tb_ret, bmk_ret, risk_free_rate);
  965. v_table_name = ['PBI-INCEP', 'PBI-YTD', 'PBI-6M', 'PBI-1Y', 'PBI-2Y', 'PBI-3Y', 'PBI-4Y', 'PBI-5Y', 'PBI-10Y'];
  966. return dict(v_table_name, t0);
  967. }
  968. /*
  969. * Calculate historcial portfolio trailing BFI indicators
  970. *
  971. * @param portfolio_ids <STRING>: comma-delimited portfolio ids
  972. * @param end_day <DATE>: the date
  973. * @param cal_method <INT>: calculate based on cumulative nav (1) or nav (2)
  974. * @param isFromNav <BOOL>: calculate returns from NAV on-the-fly (true) or get from monthly return table (false)
  975. *
  976. * TODO: intergrate with cal_portfolio_indicators
  977. *
  978. * Example: cal_portfolio_bfi_indicators('166002,166114', 2024.08.31, 1, true);
  979. *
  980. */
  981. def cal_portfolio_bfi_indicators(portfolio_ids, end_day, cal_method, isFromNav) {
  982. very_old_date = 1990.01.01;
  983. start_month = 1990.01M;
  984. portfolio_info = get_portfolio_info(portfolio_ids);
  985. if(portfolio_info.isVoid() || portfolio_info.size() == 0) { return null };
  986. portfolio_info.rename!('portfolio_id', 'entity_id');
  987. if(isFromNav == true) {
  988. // 从净值开始计算收益
  989. tb_raw_ret = SELECT * FROM cal_portfolio_nav(portfolio_ids, very_old_date, cal_method) WHERE price_date <= end_day;
  990. if(tb_raw_ret.isVoid() || tb_raw_ret.size() == 0) return null;
  991. // funky thing is you can't use "AS" for the grouping columns?
  992. tb_ret = SELECT portfolio_id, price_date.month(), price_date.last() AS price_date, (1+ret).prod()-1 AS ret, nav.last() AS nav
  993. FROM tb_raw_ret
  994. WHERE price_date <= end_day
  995. GROUP BY portfolio_id, price_date.month();
  996. tb_ret.rename!(['portfolio_id', 'month_price_date'], ['entity_id', 'end_date']);
  997. } else {
  998. // 从pf_portfolio_performance表里读月收益
  999. tb_ret = get_monthly_ret('PF', portfolio_ids, very_old_date, end_day, true);
  1000. tb_ret.rename!(['portfolio_id'], ['entity_id']);
  1001. v_end_date = tb_ret.end_date.temporalParse('yyyy-MM');
  1002. tb_ret.replaceColumn!('end_date', v_end_date);
  1003. }
  1004. if(tb_ret.isVoid() || tb_ret.size() == 0) return null;
  1005. // 取组合和基准的对照表
  1006. bfi_benchmark = SELECT portfolio_id AS entity_id, end_date.temporalParse('yyyy-MM') AS end_date, factor_id AS benchmark_id
  1007. FROM get_portfolio_bfi_factors(portfolio_ids, start_month.temporalFormat('yyyy-MM'), end_day.temporalFormat('yyyy-MM'));
  1008. if(bfi_benchmark.isVoid() || bfi_benchmark.size() == 0) { return null; }
  1009. bmk_ret = get_benchmark_return(bfi_benchmark, end_day);
  1010. if(bmk_ret.isVoid() || bmk_ret.size() == 0) { return null; }
  1011. risk_free_rate = SELECT fund_id, temporalParse(end_date, 'yyyy-MM') AS end_date, ret FROM get_risk_free_rate(very_old_date, end_day);
  1012. if(risk_free_rate.isVoid() || risk_free_rate.size() == 0) { return null; }
  1013. t0 = cal_trailing_bfi_indicators(portfolio_info, bfi_benchmark, end_day, tb_ret, bmk_ret, risk_free_rate);
  1014. v_table_name = ['PBI-INCEP', 'PBI-YTD', 'PBI-6M', 'PBI-1Y', 'PBI-2Y', 'PBI-3Y', 'PBI-4Y', 'PBI-5Y', 'PBI-10Y'];
  1015. return dict(v_table_name, t0);
  1016. }